Skip to main content
Log in

Survey of heat transfer correlations in forced convection boiling

Zusammenstellung von Wärmeübergangs-Beziehungen beim Sieden bei Zwangskonvektion

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

A critical survey was conducted of the most relevant correlations of boiling heat transfer for water in forced convection flow.

Most of the investigations carried out on partial nucleate boiling and fully developed nucleate boiling have led to the formulation of correlations which cannot cover a wide range of operating conditions, due to the empirical approach considered.

A comparative analysis is therefore required in order to define the accuracy of the proposed correlations, on the basis of the experimental data presently available.

The survey allows the accuracy of the different calculating procedures to be evaluated. The results obtained also indicate the most reliable heat transfer correlations for the different operating conditions investigated.

This survey was developed considering five pressure ranges (up to 180 bar) for both saturation and subcooled boiling conditions.

Zusammenfassung

Die wichtigsten Beziehungen für das Sieden von Wasser bei Zwangskonvektion wurde kritisch zusammengestellt.

Die meisten Untersuchungen über partielles und über voll entwickeltes Blasensieden führten zu Beziehungen, die wegen ihrer empirischen Ableitung keinen weiteren Bereich der Arbeitsbedingungen abdecken können.

Man braucht daher eine vergleichende Untersuchung, um die Genauigkeit der vorgeschlagenen Beziehungen auf der Grundlage der vorhandenen Meßdaten zu bestimmen.

Diese Zusammenstellung erlaubt es, die Genauigkeit der verschiedenen Rechenverfahren auszuwerten. Die erhaltenen Ergebnisse führen auf die zuverlässigsten Wärmeübergangsbeziehungen für verschiedene Arbeitsbedingungen. Es wurden fünf Druckbereiche (bis zu 180 bar) für Sieden bei Sättigung und bei Unterkühlung betrachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BL :

coefficient defined by Levy correlation

c:

specific heat at constant pressure, J/kg K

D:

equivalent diameter of flow channel, m

d:

bubble departure diameter, m

f:

bubble frequency, 1/s

g:

gravity acceleration, m/s2

G:

mass velocity, kg/m2s

H:

enthalpy, J/kg

h:

heat transfer coefficient, W/m2K

L:

latent heat of vaporization, J/kg

M:

molecular weight

p:

pressure, bar

ΔP :

pressure difference corresponding to the superheat, bar

q:

heat flux, W/m2

RP :

smoothing-depth, m

T:

temperature, K

ΔTs :

superheat, K

ΔTsub :

subcooling, K

w:

liquid velocity, m/s

x:

steam quality

α:

thermal diffusivity, m2/s

λ:

thermal conductivity, W/m K

μ:

viscosity, N s/m2

ρ:

density, kg/m3

σ:

surface tension, N/m

Θ:

contact angle, rad

Re:

Reynolds number

Pr:

Prandtl number

B:

refers to boiling condition

b:

refers to bulk flow condition

c:

refers to calculated value

cr:

refers to critical condition

e:

refers to experimental data

f:

refers to single phase condition

FDB:

refers to fully developed nucleate boiling condition

ℓ:

refers to liquid phase

i:

refers to incipient boiling condition

p.b:

refers to pool boiling condition

s:

refers to saturation condition

v:

refers to saturated vapor condition

w:

refers to wall temperature

References

  1. McAdams, W.H.; Kennel, W.E.; Minden, C.S.; Rudolf, C.; Picornell, P.M.; Dew, J.E.: Heat transfer at high rates to water with surface boiling, Industrial Engng. Chem., 41 (1949) 1945–1953

    Article  Google Scholar 

  2. Buchberg, H.; Romie, F.; Lipkis, R.; Greenfield, M.: Heat transfer pressure drop, and burnout studies with or without surface boiling for de-aerated and gased water at elevated pressures in a forced flow system, Heat Transfer and Fluid Mech. Inst. Preprint of Paper 1951-Paper 13, Stanford University Press, 117–192

  3. Jens, W.H.; Lottes, P.A.: Analysis of heat transfer burnout pressure drop and density data for high pressure water, USAEC Rep. ANL (1951) 4627

  4. Rohsenow, W.M.; Clark, J.A.: Heat transfer and pressure drop data for high heat flux densities to water at high subcritical pressures, Heat Transfer and Fluid Mech. Inst., Stanford University Press (1951)

  5. Mikheev, M.I.: Izv. AN. SSSR, OTN, 10 (1952)

  6. Forster, H.K.; Zuber, N.: Dynamics of vapour bubbles and boiling heat transfer, A.I.Ch.E.J. 1, 4 (1955) 531–535

    Google Scholar 

  7. Aladiev, I.T.; Dodonov, L.D.; Udalov, U.S.: Teploenergetika 4, 9 (1957)

    Google Scholar 

  8. Engelberg-Forster, K.; Greif, R.: Heat transfer to a boiling liquid-mechanism and correlations, J. Heat Transfer 81 (1959) 43–53

    Google Scholar 

  9. Levy, S.: Generalized correlation of boiling heat transfer, J. Heat Transfer, 81 1 (1959) 37–42

    Google Scholar 

  10. Poletavkin, P.G.: Teploenergetika, 12 (1959)

  11. Weatherhead, R.J.: Nucleate boiling characteristic and the critical heat flux occurrence in subcooled axial-flow water system, USAEC Rep. ANL (1962) 6675

  12. Aladiev, I.T.: Teploenergetika, 10, 4 (1963) 57–61

    Google Scholar 

  13. Kutateladze, S.S.: Fundamentals of heat transfer, Editor Cess R.D., London (1963)

  14. Stephan, K.: Beitrag zur Thermodynamik des Wärmeübergangs beim Sieden. Abh. DT. Kältetechn. Ver. 18, Karlsruhe: C.F. Müller (1964)

    Google Scholar 

  15. Bergles, A.E.; Rohsenow, W.M.: The determination of forcedconvection surface-boiling heat transfer, J. Heat Transfer (1964)

  16. Treshchev, G.G.: The number of vapor-formation center in surface boiling, from: Convective Heat Transfer in Two-phase and One-phase flow. Editors Borishankii, V.M., Paleev, I.I. (1964)

  17. Tarasova, N.V.; Orlov, V.N.: Heat transfer and hydraulic resistance during surface boiling of water in annular channels, from: Convective Heat Transfer in Two-phase and One-phase Flow. Editors Borishanskii, V.M., Paleev, I.I. (1964)

  18. Morozov, V.G.: Heat transfer during the boiling of water in tubes, from: Convective Heat Transfer in Two-phase and One-phase Flow, Editors Borishanskii, V.M., Paleev, I.I. (1964)

  19. Thom, J.R.S.; Walker, V.M.; Fallon, J.S.; Reising, G.F.S.: Boiling in subcooled water during flow up heated tubes or annuli, Proc. of Inst. Mech. Engr. 3C180 (1965–1966) 226–246

    Google Scholar 

  20. Davies, E.J.; Anderson, G.H.: The incipience of nucleate boiling in forced convection flow, A.I.Ch.E. J., 13 (1966) 774–780

    Google Scholar 

  21. Pokhvalov, Yn.E.; Kronin, G.H.; Kurganova, I.V.: Correlation of experimental data on heat transfer with nucleate boiling of subcooled liquid in tubes, Teploenergetika, 13 (1966) 63–68

    Google Scholar 

  22. Müller, F.: Wärmeübergang bei der Verdampfung unter hohen Drücken, V.D.I.Verlag Düsseldorf (1967)

  23. Hodgson, A.S.: Forcedconvection, subcooled boiling heat transfer with water in an electrically heated tube at 100–550 lb/in2, Trans. Instn. Chem. Engrs 46, T25 (1968)

    Google Scholar 

  24. Chernobai, V.A.: Determining the conditions of incipience of nucleate boiling with forced flow of a subcooled liquid, Thermal Engineering 17 (1970) 97–100

    Google Scholar 

  25. Rassokhin, N.G.; Shvetsvov; Kuz'Min, A.V.: Calculations of boiling heat transfer, Thermal Engineering, 9 (1970) 86–90

    Google Scholar 

  26. Tong, L.S.: Heat transfer in two-phase flow, Lecture Series 31, Von Karman Institute for Fluid Dynamics, (1971)

  27. Labuntsov, D.A.: Heat transfer problems with nucleate boiling of liquids, Thermal Engineering 9, (1972) 21–28

    Google Scholar 

  28. Moles, F.D.; Shaw, J.F.G.: Boiling heat transfer to subcooled liquids under conditions of forced convection, Trans. Instn. Chem. Engrs, 50 (1972)

  29. Vaihinger, D.; Kaufmann, W.D.: The influence of pressure on heat transfer with fully developed nucleate boiling, I.I.F., Transport de Chaleur et de Masse dans le Systémes Frigorifique et de Conditionnement d'Air. BFRAAV, 1-1-526 (1972) 85–96

    Google Scholar 

  30. Borishanskii, V.M.: A theoretical basis for the thermal calculation of steam generator in the sub-critical regime, Heat Transfer Soviet Research, 5 (1973) 137–148

    Google Scholar 

  31. Tolubinskiy, V.I.; Konstanchuk, D.M.; Krisveshko, A.A.; Ostrovskiy, Yu.N.: Incipient boiling of subcooled water at low forced convection rates, Heat Transfer Soviet Research, 7 (1975)

  32. Campolunghi, F.; Cumo, M.; Palazzi, G.; Urbani, G.: Subcooled boiling correlation for thermal design of commercial steam generator, XXXI Congresso Nazionale A.T.I., Pavia (1976) 45–54

  33. Ünal, H.C.: Void fraction and incipient point of boiling during the subcooled nucleate flow boiling of water, Int. J. of Heat and Mass Transfer 20, (1977) 409–419

    Article  Google Scholar 

  34. Guglielmini, G.; Nannei, E.; Pisoni, C.: Esame critico comparativo delle correlazioni di scambio termico nell'ebollizione forzata, Report C.N.E.N. RT/Ing. (78) 18

  35. Properties of water and steam in SI-Units. Berlin-Heidelberg-New York: Springer und München: R. Oldenbourg 1969

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guglielmini, G., Nannei, E. & Pisoni, C. Survey of heat transfer correlations in forced convection boiling. Warme- und Stoffubertragung 13, 177–185 (1980). https://doi.org/10.1007/BF01433445

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01433445

Keywords

Navigation