Skip to main content
Log in

Molecular evolution and population genetics of Greater Caribbean green turtles (Chelonia mydas) as inferred from mitochondrial DNA control region sequences

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The molecular evolution and population genetics of migratory green turtles (Chelonia mydas) in the Greater Caribbean were examined with mitochondrial DNA (mtDNA) control region I sequences. A total of 488 base positions (bp) per individual were aligned for 44 individuals from four nesting populations in Florida, Costa Rica, Aves Island (Venezuela), and Surinam. Twelve sequence polymorphisms were detected, representing ten transitions, one transversion, and one 10-bp repeat. Sequence analyses of within- and between-population diversity revealed a deep divergence between western and eastern Caribbean nesting colonies and an inverse relationship between reproductive female population size and mtDNA diversity. In small populations, genetic admixture was important to maintaining high diversity, whereas larger populations appear to have experienced historical bottlenecks or resulted from founder effects. Mitochondrial DNA sequences of the control region offer an order of magnitude greater resolution than restriction site data for addressing questions about mtDNA variation, both within and between populations of green turtles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, M.W., M.M. Miyamoto, K.A. Bjorndal, A.B. Bolten & B.W. Bowen, 1994. Support for natal homing in green turtles from mitochondrial DNA sequences. Copeia 1994:34–41.

    Google Scholar 

  • Aquadro, C.F. & B.D. Greenberg, 1983. Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312.

    PubMed  Google Scholar 

  • Arnason, U., A. Gullberg & B. Widengren, 1993. Cetacean mitochondrial DNA control region: Sequences of all extant baleen whates and two sperm whale species. Mol. Biol. Evol. 10:960–970.

    PubMed  Google Scholar 

  • Avise, J.C., 1991. Ten unorthodox perspectives on evolution prompted by comparative population genetic findings on mitochondrial DNA. Annu. Rev. Genet. 25:45–69.

    PubMed  Google Scholar 

  • Avise, J.C., 1992. Molecular population structure and biogeographic history of a regional fauna: A case history with lessons for conservation biology. Oikos 63:62–76.

    Google Scholar 

  • Avise, J.C., J. Arnold, R.M. Ball, E. Bermingham, T. Lamb, J.E. Neigel, C.A. Reeb & N.C. Saunders, 1987. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18:489–522.

    Google Scholar 

  • Avise, J.C., R.M. Ball, Jr. & J. Arnold, 1988. Current versus historical population sizes in vertebrate species with high gene flow: A comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Mol. Biol. Evol. 5:331–344.

    PubMed  Google Scholar 

  • Avise, J.C., B.W. Bowen, T. Lamb, A.B. Meylan & E. Bermingham, 1992. Mitochondrial DNA evolution at a turtle's pace: Evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Mol. Biol. Evol. 9:457–473.

    PubMed  Google Scholar 

  • Balazs, G.H. 1982. Growth rates of immature green turtles in the Hawaiian Archipelago, pp. 117–125 in Biology and Conservation of Sea Turtles, edited by K.A. Bjorndal, Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Barton, N.H. & M. Slatkin, 1986: A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56:409–415.

    PubMed  Google Scholar 

  • Bermingham, E. & H.A. Lessios, 1993. Rate variation of protein and mitochondrial DNA evolution as revealed by sea urchins separated by the Isthmus of Panama. Proc. Natl. Acad. Sci. USA 90:2734–2738.

    PubMed  Google Scholar 

  • Bernatchez, L. & R.G. Danzmann, 1993. Congruence in control-region sequence and restriction-site variation in mitochondrial DNA of brook charr (Salvelinus fontinalis Mitchill). Mol. Biol. Evol. 10:1002–1014.

    Google Scholar 

  • Bowen, B.W., A.B. Meylan & J.C. Avise, 1989. An odyssey of the green turtle: Ascension Island revisited. Proc. Natl. Acad. Sci. U.S.A. 86:573–576.

    Google Scholar 

  • Bowen, B.W., A.B. Meylan, J.P. Ross, C.J. Limpus, G.H. Balazs & J.C. Avise, 1992. Global population structure and natural history of the green turtle (Chelonia mydas) in terms of matriarchal phylogeny. Evolution 46:865–881.

    Google Scholar 

  • Bowen, B.W. & J.C. Avise, 1990. Genetic structure of Atlantic and Gulf of Mexico populations of seabass, menhaden, and sturgeon: Influence of zoogeographic factors and life-history patterns Mar. Biol. 107:371–381.

    Google Scholar 

  • Bowen, B.W., W.S. Nelson & J.C. Avise, 1993. A molecular phylogeny for marine turtles: Trait mapping, rate assessment, and conservation relevance. Proc. Natl. Acad. Sci. USA 90:5574–5577.

    PubMed  Google Scholar 

  • Briggs, J.C., 1974. Marine Zoogeography. McGraw Hill, New York.

    Google Scholar 

  • Brown, G.G., 1986 Structural conservation and variation in the dloop-containing region of vertebrate DNA. J. Mol. Biol. 192:503–511.

    PubMed  Google Scholar 

  • Brown, J.R., A.T. Beckenbach & M.J. Smith, 1993. Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol. Biol. Evol. 10:326–341.

    PubMed  Google Scholar 

  • Brown, W.M., M. George, Jr. & A.C. Wilson, 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76:1967–1971.

    PubMed  Google Scholar 

  • Cann, R.L., W.M. Brown & A.C. Wilson, 1984. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106:479–499.

    PubMed  Google Scholar 

  • Carr, A.F., 1967. So Excellent a Fishe: A Natural History of Sea Turtles. Scribner New York

    Google Scholar 

  • Carr, A.F. & M.H. Carr, 1974. Site fixity in the Caribbean green turtle. Ecology 43:425–429.

    Google Scholar 

  • Carr, A.F., M.H. Carr & A.B. Meyland, 1978. The ecology and migration of sea turtles, 7. The West Caribbean green turtle colony. Bull. Am. Mus. Nat. Hist. 162:1–46.

    Google Scholar 

  • Carr, A.F. & H.F. Hirth, 1962. The ecology and migrations of sea turtles, 5. Comparative features of isolated green turtle colonies. Am. Mus. Novit. 2091:1–42.

    Google Scholar 

  • Dillon, M.C. & J.M. Wright, 1993. Nucleotide sequence of the d-loop region of the sperm whale (Physeter macrocephalus) mitochondrial genome. Mol. Biol. Evol. 10:296–305.

    PubMed  Google Scholar 

  • Donnelly, T.W., 1989. History of marine barriers and terrestrial connections: Caribbean paleogeographic inference from pelagic sediment analysis, pp. 103–118 in Biogeography of the West Indies: Past, Present, and Future, edited by C.A. Woods. Sandhill Crane Press, Gainesville, Florida.

    Google Scholar 

  • Edwards, S.V. & A.C. Wilson, 1990. Phylogenetically informative length polymorphism and sequence variability in mitochondrial DNA of Australian songbirds (Pomatostomus). Genetics 126:695–711.

    PubMed  Google Scholar 

  • Frazer, N.B. & R.C. Ladner, 1986. A growth curve for green sea turtles,Chelonia mydas, in the U.S. Virgin Islands, 1913–14. Copeia 1986:798–802.

    Google Scholar 

  • Helm-Bychowski, K. & J. Cracraft, 1993. Recovering phylogenetic signal from DNA sequences: Relationships within the corvine assemblage (Class Aves) as inferred from complete sequences of the mitochondrial DNA cytochrome-b gene. Mol. Biol. Evol. 10:1196–1214.

    PubMed  Google Scholar 

  • Jukes, T.H. & C.R. Cantor, 1969. Evolution of protein molecules, pp. 21–132 in Mammalian Protein Molecules, edited by H.N. Munro. Academic Press, New York.

    Google Scholar 

  • Karl, S.A., B.W. Bowen & J.C. Avise, 1992. Global population structure and male-mediated gene flow in the green turtle (Chelonia mydas): RFLP analysis of anonymous nuclear DNA regions. Genetics 131:163–173.

    PubMed  Google Scholar 

  • Kimura, M., 1979. The neutral theory of molecular evolution. Sci. Am. 241:98–126.

    PubMed  Google Scholar 

  • Knowlton, N., L.A. Weigt, L.A. Solórzano, D.K. Mills & E. Bermingham, 1993. Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the Isthmus of Panama. Science 260:1629–1632.

    PubMed  Google Scholar 

  • Meylan, A.B., B.W. Bowen & J.C. Avise, 1990. A genetic test of natal homing versus social facilitation models for green turtle migration. Science 248:724–727.

    PubMed  Google Scholar 

  • Moritz, C., T.E. Dowling & W.M. Brown, 1987. Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Ann. Rev. Ecol. Syst. 18:269–292.

    Google Scholar 

  • Moritz, C. & W.M., Brown, 1987. Tandem duplications in animal mitochondrial DNAs: Variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. USA 34:7183–7187.

    Google Scholar 

  • Nei, M., 1987 Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nei, M. & D. Graur, 1984. Extent of protein polymorphism and the neutral mutation theory, pp. 73–118 in Evolutionary Biology, Vol. 17, edited by M.K. Hecht, B. Wallace & G.T. Prance Plenum Press, New York.

    Google Scholar 

  • Nei, M. & L. Jin, 1989. Variances of the average numbers of nucleotide substitutions within and between populations. Mol. Biol. Evol. 6:290–300.

    PubMed  Google Scholar 

  • Parsons, J.J., 1962. The Green Turtle and Man: University of Florida Presses, Gainesville, Florida.

    Google Scholar 

  • Quinn, T.W., 1992. The genetic legacy of Mother Goose: Phylogeographic patterns of lesser snow gooseChen caerulescens caerulescens maternal lineages. Mol. Ecol. 1:105–117

    PubMed  Google Scholar 

  • Rice, W.R., 1989. Analyzing tables of statistical tests. Evolution 43:223–225.

    Google Scholar 

  • Saccone, C., M. Attimonelli & E. Sbisá, 1987. Structural elements highly preserved during the evolution of the d-loop-containing region in vertebrate mitochondrial DNA. J. Mol. Evol. 26:205–211.

    PubMed  Google Scholar 

  • Sang, T.-K., H.-Y. Chang, C.-T. Chen & C.-F. Hui, 1994. Population structure of the Japanese eel,Anguilla japonica. Mol. Biol. Evol. 11:250–260.

    PubMed  Google Scholar 

  • Slatkin, M. & N.H. Barton, 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368.

    Google Scholar 

  • Sokal, R.R. & F.J. Rohlf, 1981. Biometry, 2nd. ed. W.H. Freeman, San Francisco.

    Google Scholar 

  • Stewart, D.T. & J. Baker, 1994. Patterns of sequence variation in the mitochondrial d-loop region of shrews. Mol. Biol. Evol. 11:9–21.

    PubMed  Google Scholar 

  • Swofford, D.L., 1990. PAUP: Phylogenetic analysis using parsimony. Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Takahata, N. & S.R. Palumbi, 1985. Extranuclear differentiation and gene flow in the finite island model. Genetics 109:441–457.

    Google Scholar 

  • Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512–526.

    PubMed  Google Scholar 

  • Vigilant, L., M. Stoneking, H. Harpending, K. Hawkes & A.C. Wilson, 1991. African populations and the evolution of human mitochondrial DNA. Science 253:1503–1507.

    PubMed  Google Scholar 

  • Wenink, P.W., A.J. Baker & M.G.J. Tilanus, 1994. Mitochondrial control-region sequences in two shorebirds species, the turnstone and the dunlin, and their utility in population genetic studies. Mol. Biol. Evol. 11:22–31.

    PubMed  Google Scholar 

  • Witherington, B.E. & L.M. Ehrhart, 1989. Status and reproductive characteristics of green turtles (Chelonia mydas) nesting in Florida, pp. 351–352 in Proceedings of the Second Western Atlantic Turtle Symposium, edited, by L. Ogren, F. Berry, K. Bjorndal, H. Kumpf, R. Mast, G. Medina, H. Reichart, & R. Witham. NOAA Tech. Mem. NMFS-SEFC-226, US Department of Commerce, Panama City, Florida.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahanas, P.N., Miyamoto, M.M., Bjorndal, K.A. et al. Molecular evolution and population genetics of Greater Caribbean green turtles (Chelonia mydas) as inferred from mitochondrial DNA control region sequences. Genetica 94, 57–66 (1994). https://doi.org/10.1007/BF01429220

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01429220

Key words

Navigation