Skip to main content
Log in

Effect of thick fixed-charge layers on electrostatic interaction — a theoretical approach

  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The electrostatic interaction pressure of charged surface layers is considered qualitatively and quantitatively. In the case of mutual penetration of the surface layers in addition to Maxwell stress and osmotic resp. hydrostatic pressure an isotropic stress on the fixed charges carrying molecules of the surface layers has to be taken into account. The derivation of the pressure-distance equations is given starting from both thermodynamic/electrostatic and hydrostatic/electrostatic principles. A possible biological significance of the additional stress is discussed emphasizing its role in modifying the structure of surface layer molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

e 0 :

elementary charge

k :

Boltzmann constant

n i :

concentration of theith ionic species in the bulk solution

P :

hydrostatic pressure

P :

hydrostatic pressure in the bulk volume (× → ∞)

P h :

integration constant, independent on ×:P h=P(h)

T :

absolute temperature

Z i :

electrovalence of theith ionic species

δ :

thickness of the surface layer

ε, ε 0 :

relative and absolute permittivities

II(×) :

osmotic pressure at position ×

II :

osmotic pressure in the bulk solution (× → ∞)

\(\Pi ^{h_0 }\) :

osmotic pressure in the symmetry plane of interacting identical surface layers (electric field strength equals zero)

\(\Pi ^{h_1 }\) :

integration constant, independent on ×:\(x:\Pi ^{h_1 } = \Pi (h)\)

Π h e :

electrostatic component of the disjoining pressureΠ h e =Π e (h)

ϱ(×) :

mobile charge density profile (cations and anions of the electrolyte)

ϱ′(×) :

fixed charge density profile

ϱ t(x):

total charge density profile (ϱ t=ϱ′ +ϱ)

ϱ 1(x):

fixed charge density profile of one of the two surface layers (ϱ 1(×)≠ 0 for 0≦×≦δ)

Ψ(×) :

electric potential profile

References

  1. Deryaguin BV (1986) Theory of stability of colloids and thin films (in Russian). Nauka, Moscow

    Google Scholar 

  2. Deryaguin BV, Churaev NV, Muller VM (1985) Surface forces (in Russian). Nauka, Moscow

    Google Scholar 

  3. Scheludko A (1984) Colloid Chemistry (in Russian). Mir, Moscow

    Google Scholar 

  4. Verwey EJV, Overbeek JThG (1948) Theory of the Stability of Lyophobic Colloids. The Interaction of Sol Particles Having an Electric Double Layer. Elsevier, Amsterdam

    Google Scholar 

  5. Overbeek JThG (1977) J Colloid Interface Sci 58:408

    Google Scholar 

  6. Bangham AD (1981) In: Salzmann EW (ed) Interaction of the blood with natural and artificial surface. Marcel Dekker, New York Basel, pp 61–84

    Google Scholar 

  7. Barber J (1980) Biochim Biophys Acta 594:253

    PubMed  Google Scholar 

  8. Parsegian VA, Fuller M, Rand RP (1979) Proc Natl Acad Sci USA 76:2750

    PubMed  Google Scholar 

  9. Gingell D, Todd I, Parsegian VA (1977) Nature 268:767

    PubMed  Google Scholar 

  10. Parsegian VA, Gingell D (1972) J Adhesion 4:283

    Google Scholar 

  11. Skutelsky E, Danon D, Wilchek M, Bayer EA (1977) J Ultrastruct Res 61:325

    PubMed  Google Scholar 

  12. Donath E, Lerche D (1980) Bioelectrochem Bioenerg 7:41

    Google Scholar 

  13. Lis J, McAlister M, Fuller M, Rand RP (1982) Biophys J 37:657

    PubMed  Google Scholar 

  14. Parsegian VA, Rand RP, Fuller M, McAlister M, Lis IJ (1979) Biorheology 16:293

    PubMed  Google Scholar 

  15. Israelachivili JN, Adams GE (1978) J Chem Soc Faraday Trans I 74:975

    Google Scholar 

  16. Marčelja S, Radič N (1976) Chem Phys Lett 42:129

    Google Scholar 

  17. Ohshima H (1977) J Theor Biol 65:523

    PubMed  Google Scholar 

  18. Evans EA, Parsegian VA (1983) Ann N Y Acad Sci 416:13

    PubMed  Google Scholar 

  19. Parsegian VA, Rand RP (1983) Ann N Y Acad Sci 416:1

    Google Scholar 

  20. Donath E, Gingell D (1983) J Cell Sci 63:113

    PubMed  Google Scholar 

  21. Donath E, Voigt A (1983) J Theor Biol 101:569

    PubMed  Google Scholar 

  22. Voigt A, Donath E, Heinrich R (1982) J Theor Biol 98:269

    PubMed  Google Scholar 

  23. Lerche D (1983) Ann N Y Acad Sci 416:66

    PubMed  Google Scholar 

  24. Makino K, Ohshima H, Kondo T (1987) Colloid Polym Sci 265:911

    Google Scholar 

  25. Ohshima H, Makino K, Kondo T (1987) J Colloid Interface Sci 116:196

    Google Scholar 

  26. Deryaguin BV, Landau LD (1941) Acta physicochim USSR 14:633

    Google Scholar 

  27. Rubin BT, Barber J (1980) Biochim Biophys Acta 592:87

    PubMed  Google Scholar 

  28. Hall DG (1977) J Chem Soc Faraday Trans II 73:101

    Google Scholar 

  29. Träuble H, Teubner M, Wolley P, Eibl M (1976) Biophys Chem 4:319

    PubMed  Google Scholar 

  30. Tamm IE (1979) Fundamentals of the Theory of Electricity. Mir, Moscow

    Google Scholar 

  31. Langmuir I (1938) J Chem Phys 6:873

    Google Scholar 

  32. Van der Schee HA, Lyklema J (1984) J Phys Chem 88:6661

    Google Scholar 

  33. Zimmermann U, Büchner H, Benz R (1982) J Membrane Biol 67:183

    Google Scholar 

  34. Glaser R, Bernhardt I, Donath E (1980) Bioelectrochem Bioenerg 116:281

    Google Scholar 

  35. Schwarz G (1978) J Membrane Biol 43:127

    Google Scholar 

  36. Edelman GM (1976) Science 192:218

    PubMed  Google Scholar 

  37. Wojtczak L, Nalecz MJ (1979) Eur J Biochem 94:99

    PubMed  Google Scholar 

  38. Donath E, Voigt A (1986) Biophys J 49:493

    PubMed  Google Scholar 

  39. Levine S, Levine M, Sharp KA, Brooks DE (1983) Biophys J 42:127

    PubMed  Google Scholar 

  40. Jenkins RE, Tanner MJA (1977) Biochem J 161:131

    PubMed  Google Scholar 

  41. Snabre P, Mills P (1985) Colloid Polym Sci 263:494

    Google Scholar 

  42. Sharp KA, Brooks DE (1985) Biophys J 47:563

    Google Scholar 

  43. Scheutjens JMHM, Fleer GJ (1985) Macromolecules 18:1882

    Google Scholar 

  44. Donath E, Voigt A (1986) J Colloid Interface Sci 109:122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donath, E., Voigt, A. Effect of thick fixed-charge layers on electrostatic interaction — a theoretical approach. Colloid & Polymer Sci 266, 1024–1030 (1988). https://doi.org/10.1007/BF01428812

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01428812

Key words

Navigation