Brownell, F.: A note on Kato's uniqueness criterion for Schrödinger operator self-adjoint extensions. Pacific J. Math.9, 953–973 (1959).
Google Scholar
Coddington, E., Levinson, N.: Theory of ordinary differential equations. New York: McGraw Hill 1953.
Google Scholar
Cook, J.: Convergence to the Møller wave-matrix. J. Math. and Physics36, 82–87 (1957).
Google Scholar
Courant, R., Hilbert, D.: Methods of mathematical physics, I. New York, Interscience, 1953.
Google Scholar
Faris, W.: The product formula for semigroups defined by Friedrichs' extension. Pacific J. Math.22, 47–70 (1967).
Google Scholar
Glimm, J., Jaffe, A.: Field theory models. In: 1970 Les Houches Lectures. Ed. Stora, R. DeWitt, C. New York: Gordon and Breach 1971.
Google Scholar
Ikebe, T., Kato, T.: Uniqueness of self-adjoint extensions of singular elliptic differential operators. Arch. Rat. Mech. Anal.9, 77–92 (1962).
Google Scholar
Jaffe, A.: Dynamics of a Cutoff λφ4 field theory. Princeton University Thesis, 1965.
Jörgens, K.: Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung in C
∞0
(G). Math. Scand.15, 5–17 (1964).
Google Scholar
Jörgens, K.: Spectral theory of Schrödinger operators. University of Colorado Lecture Notes, 1970.
Kalf, H., Walter, J.: Strongly singular potentials and essential self-adjointness of singular elliptic operators in C
∞0
(R
n/{0}). J. Func. Anal. (to appear).
Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Am. Math. Soc.70, 195–211 (1951).
Google Scholar
Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966.
Google Scholar
Konrady, J.: Almost positive perturbations of positive selfadjoint Operators. Commun. Math. Phys.22, 295–299 (1971).
Google Scholar
Landau, L., Lifshitz, E.: Quantum mechanics. Reading, Mass.: Addison-Wesley, 1958.
Google Scholar
Müller-Pfeiffer, E.: Über die Lokalisierung des wesentlichen Spektrums des Schrödinger-Operators. Math. Nachr.46, 157–170 (1970).
Google Scholar
Nelson, E.: Analytic vectors. Ann. Math.70, 572–615 (1959).
Google Scholar
Nelson, E.: Feynman integrals and the Schrödinger equation. J. Math Phys.5, 332–343 (1964).
Google Scholar
Nelson, E.: A quartic interaction in two dimensions In: Proc. Conf. Math. Theory Elem. Particles. M.I.T. Press, 69–73, 1966.
Nelson, E.: Topics in dynamics, I. Princeton, Princeton University Press 1969.
Google Scholar
Reed, M., Simon, B.: Methods of modern mathematical Physics, I. New York: Academic Press, 1972.
Google Scholar
Rosen, L.: The (φ2n)2 Quantum field theory: Higher order estimates. Comm. Pure Appl. Math.24 417–457 (1971).
Google Scholar
Schmincke, U.-W.: Essential self-adjointness of a Schrödinger operator with strongly singular potential. Math. Z.124, 47–50 (1972).
Google Scholar
Segal, I.: Construction of nonlinear local quantum processes, I. Ann. Math.92 462–481 (1970).
Google Scholar
Simon, B.: Distributions and their hermite expansions. J. Math. Phys.12, 140–148 (1971).
Google Scholar
Simon, B.: Quantum mechanics for hamiltonians defined as quadratic forms. Princeton University Press, 1971.
Simon, B., Höegh-Krohn, R.: Hypercontractive semigroups and self-coupled bose fields in two-dimensional space-time. J. Func. Anal.9, 121–180 (1972).
Google Scholar
Stein, E.: Topics in harmonic analysis related to the Littlewood-Paley theory. Ann. Math. Study63 (1970).
Stetkaer-Hansen, H.: A Generalization of a theorem of Wienholtz concerning essential self-adjointness of singular elliptic operators. Math. Scand.19, 108–112 (1966).
Google Scholar
Strichartz, R.: Multipliers on fractional Sobolev spaces. J. Math. Mech.16, 1031–1060 (1967).
Google Scholar
Stummel, F.: Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen. Math. Ann.132, 150–176 (1956).
Google Scholar
Walter, J.: Note on a paper by Stetkaer-Hansen concerning essential self-adjointness of Schrödinger operators. Math. Scand.25, 94–96 (1969).
Google Scholar
Wüst, R.: Generalizations of Rellich's theorem on perturbation of (essentially) self-adjoint operators. Math. Z.119, 276–280 (1971).
Google Scholar