Skip to main content

Essential self-adjointness of Schrödinger operators with positive potentials

This is a preview of subscription content, access via your institution.

References

  1. Brownell, F.: A note on Kato's uniqueness criterion for Schrödinger operator self-adjoint extensions. Pacific J. Math.9, 953–973 (1959).

    Google Scholar 

  2. Coddington, E., Levinson, N.: Theory of ordinary differential equations. New York: McGraw Hill 1953.

    Google Scholar 

  3. Cook, J.: Convergence to the Møller wave-matrix. J. Math. and Physics36, 82–87 (1957).

    Google Scholar 

  4. Courant, R., Hilbert, D.: Methods of mathematical physics, I. New York, Interscience, 1953.

    Google Scholar 

  5. Faris, W.: The product formula for semigroups defined by Friedrichs' extension. Pacific J. Math.22, 47–70 (1967).

    Google Scholar 

  6. Glimm, J., Jaffe, A.: Field theory models. In: 1970 Les Houches Lectures. Ed. Stora, R. DeWitt, C. New York: Gordon and Breach 1971.

    Google Scholar 

  7. Ikebe, T., Kato, T.: Uniqueness of self-adjoint extensions of singular elliptic differential operators. Arch. Rat. Mech. Anal.9, 77–92 (1962).

    Google Scholar 

  8. Jaffe, A.: Dynamics of a Cutoff λφ4 field theory. Princeton University Thesis, 1965.

  9. Jörgens, K.: Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung in C 0 (G). Math. Scand.15, 5–17 (1964).

    Google Scholar 

  10. Jörgens, K.: Spectral theory of Schrödinger operators. University of Colorado Lecture Notes, 1970.

  11. Kalf, H., Walter, J.: Strongly singular potentials and essential self-adjointness of singular elliptic operators in C 0 (R n/{0}). J. Func. Anal. (to appear).

  12. Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Am. Math. Soc.70, 195–211 (1951).

    Google Scholar 

  13. Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  14. Konrady, J.: Almost positive perturbations of positive selfadjoint Operators. Commun. Math. Phys.22, 295–299 (1971).

    Google Scholar 

  15. Landau, L., Lifshitz, E.: Quantum mechanics. Reading, Mass.: Addison-Wesley, 1958.

    Google Scholar 

  16. Müller-Pfeiffer, E.: Über die Lokalisierung des wesentlichen Spektrums des Schrödinger-Operators. Math. Nachr.46, 157–170 (1970).

    Google Scholar 

  17. Nelson, E.: Analytic vectors. Ann. Math.70, 572–615 (1959).

    Google Scholar 

  18. Nelson, E.: Feynman integrals and the Schrödinger equation. J. Math Phys.5, 332–343 (1964).

    Google Scholar 

  19. Nelson, E.: A quartic interaction in two dimensions In: Proc. Conf. Math. Theory Elem. Particles. M.I.T. Press, 69–73, 1966.

  20. Nelson, E.: Topics in dynamics, I. Princeton, Princeton University Press 1969.

    Google Scholar 

  21. Reed, M., Simon, B.: Methods of modern mathematical Physics, I. New York: Academic Press, 1972.

    Google Scholar 

  22. Rosen, L.: The (φ2n)2 Quantum field theory: Higher order estimates. Comm. Pure Appl. Math.24 417–457 (1971).

    Google Scholar 

  23. Schmincke, U.-W.: Essential self-adjointness of a Schrödinger operator with strongly singular potential. Math. Z.124, 47–50 (1972).

    Google Scholar 

  24. Segal, I.: Construction of nonlinear local quantum processes, I. Ann. Math.92 462–481 (1970).

    Google Scholar 

  25. Simon, B.: Distributions and their hermite expansions. J. Math. Phys.12, 140–148 (1971).

    Google Scholar 

  26. Simon, B.: Quantum mechanics for hamiltonians defined as quadratic forms. Princeton University Press, 1971.

  27. Simon, B., Höegh-Krohn, R.: Hypercontractive semigroups and self-coupled bose fields in two-dimensional space-time. J. Func. Anal.9, 121–180 (1972).

    Google Scholar 

  28. Stein, E.: Topics in harmonic analysis related to the Littlewood-Paley theory. Ann. Math. Study63 (1970).

  29. Stetkaer-Hansen, H.: A Generalization of a theorem of Wienholtz concerning essential self-adjointness of singular elliptic operators. Math. Scand.19, 108–112 (1966).

    Google Scholar 

  30. Strichartz, R.: Multipliers on fractional Sobolev spaces. J. Math. Mech.16, 1031–1060 (1967).

    Google Scholar 

  31. Stummel, F.: Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen. Math. Ann.132, 150–176 (1956).

    Google Scholar 

  32. Walter, J.: Note on a paper by Stetkaer-Hansen concerning essential self-adjointness of Schrödinger operators. Math. Scand.25, 94–96 (1969).

    Google Scholar 

  33. Wüst, R.: Generalizations of Rellich's theorem on perturbation of (essentially) self-adjoint operators. Math. Z.119, 276–280 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Sloan Foundation Fellow.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simon, B. Essential self-adjointness of Schrödinger operators with positive potentials. Math. Ann. 201, 211–220 (1973). https://doi.org/10.1007/BF01427943

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01427943

Keywords

  • Positive Potential