Skip to main content
Log in

Symmetry substructures for MQ-NMR of [A]20 spin clusters of dodecahedranes, [13CH]20 or [13CD]20, metallic M @M20 and [H2O]+ @[H2O]20 exo-cage cluster molecules and their higher-n SO(3) ×l n spin algebras, within the context of mapping,l n -ITP algebras and number partitions

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

For both highern andI i ≧1 spin clusters, combinatorics provides powerful arguments with which to investigate the substructural forms of cluster spin algebras; this is especially so for SO(3) ×l n symmetries for 12≦n≦60 wherex [λ](.) character tabulations become extensive. Bijective enumerative mappings over the combinatorialp-tuples (number partitions) afford insight into the general functionf(p,n) as well as into {|IM(I 1I n [λ]〉}M-structure of spin algebras, even where the full details of the explicitx [λ]() (l n ) characters are not readily available. Both simply-reducible and higher aspects ofl n -inner tensor product (ITP) algebras are derived from dimensionality considerations, as part of combinatorial hooklength formalisms for\(\chi _{(1^n )}^{[\lambda ]} \). TheI i ≦3/2 forms of [A] n clusters forn≦20, (forp≦3, 4) of multiple-quantum NMR (MQ-NMR) are considered here as part of current interest in giant cage-clusters. In addition, the SU2 substructural hierarchy over Liouville space is derived for [A]20(l n ) (I i =1/2) spin cluster of the cage-cluster molecule dodecahedrane; aspects ofI i =1 spin cluster over {|IM (...)〉} space are derived as high temperature model of the exo-cage of [H2O]+ @[H2O]20 cluster ion; 20-fold higher-I i lusters provide models for M @M20 metal-clusters and further applications ofl 20-number partitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balasubramanian, K.: Chem. Phys. Lett183, 292 (1991); Balasubramanian, K., Pitzer, K.S., Strauss, H.: J. Mol. Spectrosc.93, 447 (1982)

    Google Scholar 

  2. Harter, W.G., Weekes, D.E.: J. Chem. Phys.90, 4724 (1989)

    Google Scholar 

  3. Paquette, L., Ternansky, R.J., Balogh, D., Kentgen, G.: J. Am. Chem. Soc105, 5441 (1983); Guo, B., Kerns, K.P., Castleman, A.W.: Science255, 1411 (1992); Wei, S., Shi, Z., Castleman, A.W.: J. Chem. Phys.94, 3268 (1991)

    Google Scholar 

  4. Pickett, W.E.: Nature351, 328 (1991); Smalley, R.E.: In: Atomic and molecular clusters. Amsterdam: Elsevier 1989; Tycko, R., Haddon, R., Douglass, D., Mujsic, A.: J. Phys. Chem.95, 518 (1991)

    Google Scholar 

  5. Mekjian, A.Z., Lee, S.L.: Phys. Rev. A44, 6294 (1991); Rota, C.-G.: In: Finite operator calculus. New York: Academic Press 1976

    Google Scholar 

  6. Berge, C.: Principles of combinatorics. New York: Academic Press 1971; see also [35] below

    Google Scholar 

  7. Andrews, G.E.: Theory of partitions. Cambridge: Cambridge University Press 1976

    Google Scholar 

  8. Doubilet, P., Rota, G.C., Stein, J.: Stud. Appl. Math.53, 185 (1974)

    Google Scholar 

  9. Temme, F.P., Colpa, J.P.: (to be published); Temme, F.P.: Mol. Phys.66, 1075 (1989); see also [15]

    Google Scholar 

  10. Temme, F.P., Colpa, J.P.: Chem. Phys.154, 97 (1991); idem.154, 111 (1991)

    Google Scholar 

  11. Sanctuary, B.C., Halstead, T.K. in: Warren, W.S. (ed.) Advances in magn. and opt. resonance, Vol. 15, pp. 79–141. New York: Academic Press 1990

    Google Scholar 

  12. Balasubramanian, K.: J. Chem. Phys.73, 3321 (1980); idem.95, 8273 (1991)

    Google Scholar 

  13. Ziauddin, M.: Proc. Lond. Math. Soc.42, 340 (1936); Liu, X., Balasubramanian, K.: J. Comp. Chem.10, 417 (1989)

    Google Scholar 

  14. Temme, F.P., Colpa, J.P., in: Congress AMPERE XXV, Stuttgart. Berlin, Heidelberg, New York: Springer 1990; idem., (in press)

    Google Scholar 

  15. Temme, F.P.: Physica A166, 685 (1990)

    Google Scholar 

  16. James, G., Kerber, A.: Representations of the symmetric group, Cambridge: Cambridge University Press 1982; see Appendices

    Google Scholar 

  17. Coleman, A.J.: Induced representations with applications tol n &GL(n) groups. Kingston, Canada: Queen's Univ. Math. Publ. 1966; Idem. in: Adv. Quantum Chem. Vol 4, p 81; New York: Academic Press 1968; see context of such work in: Frame, J.S., de-Q. Robinson, G., Thrall, R.M.: Can. J. Math.6, 316 (1954)

    Google Scholar 

  18. Biedenharn, L.C., Louck, J.D.: In: Permutation group in physics and chemistry. Lecture-Notes in Chemistry No. 12. Berlin, Heidelberg, New York: Springer 1979, pp. 71–148; idem: Racah-Wigner algebra of quantum theory, Chapter 9, Encyclopedia of Mathematics, Cambridge: Cambridge University Press 1984

    Google Scholar 

  19. Temme, F.P.: Physica A166, 676 (1990)

    Google Scholar 

  20. Temme, F.P., Colpa, J.P.: Mol. Phys.73, 953 (1991); et loc.cit.:

    Google Scholar 

  21. Temme, F.P.: J. Magn. Reson.83, 383 (1989)

    Google Scholar 

  22. Pines, A.: In: B. Maraveglia (ed.): Proc. of ‘C’-th E. Fermi Phys. Institute. Amsterdam: North-Holland 1988

    Google Scholar 

  23. Neilsen, N., Bilsoe, H., Jakobsen, H.: In: Proc. Congress AM-PERE XXV, Stuttgart. Berlin, Heidelberg, New York: Springer 1990; idem.: J. Magn. Reson.97, 149 (1992; in press)

    Google Scholar 

  24. Corio, P.L.: Structure of high-resolution NMR spectra. New York: Academic Press 1966

    Google Scholar 

  25. Jones, R.G., Hirst, R.C., Bernstein, H.J.: Can. J. Chem.43, 683 (1965); Jones, R.G., Walker, S.M.: Mol. Phys.10, 349 (1965); see also Lynden-Bell, R.M.: ibid.15, 529 (1968)

    Google Scholar 

  26. Flurry, R.J., Siddall, T.H., in: Recent advances in group theory and its application to spectroscopy. Donini, J. (ed.): New York: Plenum Press 1979

    Google Scholar 

  27. Idem.: Phys. Rev. B31, 4153 (1985); Kent, R.D., Schlesinger, M., Ponnapoulis, P.: ibid.: B31, 1264 (1985); Siddall, T.H.: J. Phys. Chem.86, 91 (1982)

    Google Scholar 

  28. Kent, R.D., Schlesinger, M.: Phys. Rev. A40, 536 (1989)

    Google Scholar 

  29. Louck, J.D., Biedenharn, L.C.: In: Adv. Quantum Chem.23, 127. New York: Academic Press 1992

    Google Scholar 

  30. Colpa, J.P., Temme, F.P.: J. Math. Chem.11, 341 (1992)

    Google Scholar 

  31. Idem.: Theor. Chim. Acta (to be published); Sullivan, J.J., Siddall-III, T.H.: J. Math. Phys.33, 1964 (1992)

    Google Scholar 

  32. Whitman, D., Onsager, L., Saunders, M., Dubbs, H.: J. Am. Chem. Soc.82, 67 (1960)

    Google Scholar 

  33. Bowden, G.J., Prandolini, M.: Mol. Phys.74, 985 (1991)

    Google Scholar 

  34. Randic, M.: J. Math. Chem1, 145 (1987); McDonald, I.G.: Symmetric functions and Hall polynomials. Oxford: Oxford University Press 1979

    Google Scholar 

  35. Ledermann, W.: Introduction to group characters 2 ed. Cambridge: Cambridge University Press 1987

    Google Scholar 

  36. Krishnamurthy, V.: Combinatorics, its theory and application.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temme, F.P., Colpa, J.P. Symmetry substructures for MQ-NMR of [A]20 spin clusters of dodecahedranes, [13CH]20 or [13CD]20, metallic M @M20 and [H2O]+ @[H2O]20 exo-cage cluster molecules and their higher-n SO(3) ×l n spin algebras, within the context of mapping,l n -ITP algebras and number partitions. Z Phys D - Atoms, Molecules and Clusters 25, 275–284 (1993). https://doi.org/10.1007/BF01426891

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01426891

PACS

Navigation