Skip to main content
Log in

Ab initio potential energy surface for Ar +3

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

The potential energy surface (PES) of linear Ar +3 is calculated at the MP4/6-31G* level including all single, double, triple and quadruple excitations. The results show that the PES of the linear Ar +3 has a very flat valley along the asymmetric stretching vibration normal mode, ν3. A higher level quadratic configuration interaction calculation including single, double and triple substitutions QCISD (T) along this flat valley suggests that an asymmetric geometry energy minimum reported earlier based on MP2 [1] is due to symmetry breaking in UHF. The global minimum of the PES is found to be for the symmetric geometry atR ab =R bc =2.66±0.01 Å, which is in good agreement with the MRD-CI calculation [2] and expectations from our earlier photodissociation experiments [3]. The calculational results are compared with other theoretical calculations, and are discussed in the context of the photodissociation and dynamics of dissociation experiments conducted on Ar +3 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowers, M.T., Palke, Wm.E., Robins, K., Roehl, C., Walsh, S.: Chem. Phys. Lett.180, 235 (1991)

    Google Scholar 

  2. Böhmer, H.-U., Peyerimhoff, S.D.: Z. Phys. D4, 195 (1986); Z. Phys. D11, 239 (1989)

    Google Scholar 

  3. Chen, Z.Y., Albertoni, C.R., Hasegawa, M., Kuhn, R., Castleman Jr., A.W.: J. Chem. Phys.91, 4019 (1989)

    Google Scholar 

  4. Albertoni, C.R., Kuhn, R., Sarkas, H.W., Castleman Jr., A.W.: J. Chem. Phys.87, 5043 (1987)

    Google Scholar 

  5. Levinger, N.E., Ray, D., Murray, K.K., Mullin, A.S., Schultz, C.P., Lineberger, W.C.: J. Chem. Phys.89, 71 (1988)

    Google Scholar 

  6. Levinger, N.E., Ray, D., Alexander, M.L., Lineberger, W.C.: J. Chem. Phys.89, 5654 (1988)

    Google Scholar 

  7. Chen, Z.Y., Cogley, C.D., Hendricks, J.H., May, B.D.: J. Chem. Phys.93, 3215 (1990)

    Google Scholar 

  8. Snodgrass, J.T., Roehl, C.M., Bowers, M.T.: Chem. Phys. Lett.159, 10 (1989)

    Google Scholar 

  9. Woodward, C.A., Upham, J.E., Stace, A.J., Murrell, J.N.: J. Chem. Phys.91, 7612 (1989)

    Google Scholar 

  10. Deluca, M.J., Johnson, M.A.: Chem. Phys. Lett.162, 445 (1989)

    Google Scholar 

  11. Hiraoka, K., Mori, T.: J. Chem. Phys.90, 7143 (1989)

    Google Scholar 

  12. Ganteför, G., Bröker, G., Holub-Krappe, E., Ding, A.: J. Chem. Phys.91, 7972 (1989)

    Google Scholar 

  13. Norwood, K., Gou, J.-H., Ng, C.Y.: J. Chem. Phys.90, 2995 (1989)

    Google Scholar 

  14. Kamke, W., Vrice, J. de, Krauss, J., Kaiser, E., Kamke, B., Hertel, I.V.: Z. Phys. D14, 339 (1989)

    Google Scholar 

  15. Nagata, T., Hirokawa, J., Kondow, T.: Chem. Phys. Lett.176, 526 (1991)

    Google Scholar 

  16. Klots, C.E.: J. Chem. Phys.83, 5854 (1985); Z. Phys. D5, 83 (1987)

    Google Scholar 

  17. Nighan, W.L., Sauerbrey, R.A., Zhu, Y., Tittel, F.K., Wilson, W.L.: IEEE J. Quantum Electron. QE-23, 253 (1987)

    Google Scholar 

  18. Miller, T.M., Ling, J.H., Saxon, R.P., Moseley, J.T.: Phys. Rev. A13, 2171 (1976)

    Google Scholar 

  19. Lee, L.C., Smith, G.P., Miller, T.M., Cosby, P.C.: Phys. Rev. A17, 2005 (1978);

    Google Scholar 

  20. Lee, L.C., Smith, G.P.: Ibid19, 2329 (1979)

    Google Scholar 

  21. Ng, C.Y., Trevor, D.J., Mahan, B.H., Lee, Y.T.: J. Chem. Phys.66, 446 (1977)

    Google Scholar 

  22. Stevens, W.J., Gardner, M., Karo, A., Julienne, P.: J. Chem. Phys.67, 2860 (1977)

    Google Scholar 

  23. Wadt, W.R.: J. Chem. Phys.68, 402 (1978)

    Google Scholar 

  24. Wadt, W.R.: Appl. Phys. Lett.38, 1030 (1981)

    Google Scholar 

  25. Heßlich, J., Kuntz, P.J.: Z. Phys. D2, 251 (1986)

    Google Scholar 

  26. Kuntz, P.J., Valldorf, J.: Z. Phys. D8, 195 (1988)

    Google Scholar 

  27. Gadéa, F.X., Amarouche, M.: Chem. Phys.140, 385 (1990)

    Google Scholar 

  28. Michels, H.H., Hobbs, R.H., Wright, L.A.: Appl. Phys. Lett.35, 153 (1979)

    Google Scholar 

  29. Moseley, J.T., Saxon, R.P., Huber, B.A., Cosby, P.C., Abouaf, R., Tadjeddine, M.: J. Chem. Phys.67, 1659 (1977)

    Google Scholar 

  30. Frisch, M.J., Head-Gordon, M., Schlegel, H.B., Raghavachari, K., Binkley, J.S., Gonzales, C., Defrees, D.J., Fox, D.J., Whiteside, R.A., Seeger, R., Melius, C.F., Baker, J., Martin, R.L., Kahn, L.R., Stewart, J.J.P., Fluder, E.M., Topiol, S., Pople, J.A.: GAUSSIAN 88, 90, Gaussian Inc., Pittsburgh, PA, 1988

  31. Handy, N.C., Knowles, P.J., Somasundram: Theor. Chim. Acta68, 87 (1985)

    Google Scholar 

  32. Schlegel, H.B.: J. Chem. Phys.84, 4530 (1986)

    Google Scholar 

  33. Duchovic, R.J., Hase, W.L., Schlegel, H.: Chem. Phys. Lett.89, 120 (1982)

    Google Scholar 

  34. Frisch, M.J., Pople, J.A., Bene, J.E.D.: J. Chem. Phys.78, 4063 (1983)

    Google Scholar 

  35. De Almeida, W.B.: Chem. Phys. Lett.166, 589 (1990)

    Google Scholar 

  36. Reynolds, C.H.: J. Am. Chem. Soc.112, 7903 (1990)

    Google Scholar 

  37. Cheney, B.V., Schulz, M.W.: J. Phys. Chem.94, 6268 (1990)

    Google Scholar 

  38. Cybulski, S.M., Chalasinski, G., Moszynski, R.: J. Chem. Phys.92, 4357 (1990)

    Google Scholar 

  39. Carneiro, J.W. de M., Schleyer, P. von R., Koch, W., Raghavachari, K.: J. Am. Chem. Soc.112, 4064 (1990)

    Google Scholar 

  40. Hong Guo, Karplus, M.: J. Phys. Chem.91, 1719 (1989)

    Google Scholar 

  41. Zhang, Q., Sabelli, N., Buch, V.: J. Phys. Chem.95, 1080 (1991)

    Google Scholar 

  42. Bauschlicher Jr., C.W., Langhoff, S.R.: Science254, 394 (1991)

    Google Scholar 

  43. Pople, J.A., Head-Gordon, M.: J. Phys. Chem.87, 5968 (1987)

    Google Scholar 

  44. For example: Paldus, J.: Hatree-Fock stability and symmetry breaking: In: Self-consistent field theory and applications. Carbo, R., Klobukowski, M. (eds.). New York: Elsevier 1990

    Google Scholar 

  45. Mezey, P.G.: Potential energy hypersurface. New York: Elsevier 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z.Y., May, B.D. & Castleman, A.W. Ab initio potential energy surface for Ar +3 . Z Phys D - Atoms, Molecules and Clusters 25, 239–246 (1993). https://doi.org/10.1007/BF01426886

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01426886

PACS

Navigation