Abstract
A theory is developed which describes the optical properties of fractal clusters (i.e. of aggregates of non-trivial Hausdorff dimension consisting of interacting monomer particles). It is shown that with respect to these properties fractal clusters differ significantly from both gases and condensed media. The interaction between the monomers is assumed to be dipole-dipole. The theory is based on the self-consistent field equations; it takes into account the fluctuation nature of the fractal cluster (considerable probability for approach of monomers to each other despite an asymptotically zero integral density). An expression is obtained for the linear susceptibility. Combination of the monomers with the formation of a cluster entails the splitting, shift and broadening of the monomer spectra. These changes depend strongly on the fractal (Hausdorff) dimension of the cluster but do not depend on the number of monomers in it (for a cluster of non-trivial dimension). On the other hand, the monomers partially retain their individuality and the susceptibility — its quasi-resonance nature. Broadening, like the imaginary part of the susceptibility, does not depend on dissipation in an individual monomer. It is predicted that giant Raman scattering may occur at an impurity particle fixed near one of the cluster monomers when excitation takes place in the absorption band of the cluster. The enhancement factor for the scattering is also determined by the fractal dimension.
This is a preview of subscription content, access via your institution.
References
Mandelbrot, B.M.: Fractals, form, chance, and dimension. San Francisco: Freeman 1977; The fractal geometry of Nature. San Francisco: Freeman 1982
Zeldovich, Ya.B., Sokolov, D.D., Uspekhi Fiz. Nauk146, 493 (1985)
Witten, T.A., Sander, L.M.: Phys. Rev. B27, 5686 (1983)
Meakin, P.: Phys. Rev. Lett.51, 1119 (1983); J. Chem. Phys.81, 4637 (1981)
Vicsek, T.: Phys. Rev. Lett.53, 2281 (1984)
Weitz, D.A., Oliveria, M.: Phys. Rev. Lett.52, 1433 (1984)
Feder, J., Joessang, T., Rosenquist, E.: Phys. Rev. Lett.53, 1403 (1984)
Schaefer, D.W., Martin, J.E., Wiltzius, P., Cannel, D.S.: Phys. Rev. Lett.52, 2371 (1984)
Ersh, I.G., Muratov, L.C., Novozhilov, S.Yu., Stockman, B.M., Stockman, M.I.: Doklady AN SSSR287, 1239 (1986); Preprint Inst. Autom. Electrometry N 292 (1985)
Elam, W.T., Wolf, S.A., Sprague, J. et al.: Phys. Rev. Lett.54, 701 (1985)
Isaacson, J., Lubensky, T.S.: J. Phys. Lett. (Paris)41, L469 (1981)
Kreibig, U.: Z. Phys. D — Atoms, Molecules and Clusters3, 239 (1986)
Berry, M.V., Percival, I.C.: Opt. Acta, 1986,33, 577
Hui, P.M., Strond, D.: Phys. Rev. B33, 2163 (1986)
Shalaev, V.M., Stockman, M.I.: Zh. Eksp. Teor. Fiz.92, 509 (1987); Preprint Inst. Phys. N 391 F, Krasnoyarsk 1986
Yemelyanov, V.I., Koroteev, N.I.: Uspekhi Fiz. Nauk135, 345 (1981)
Moskovits, M.: Rev. Mod. Phys.57, 785 (1985)
Kittel, Ch.: Introduction to solid state physics, 4th Edn., Chap. 13. New York: J. Wiley 1973
Klimontovich, Yu.L., Osipov, M.A., Egibyan, L.V.: Kristallografiya30, 445 (1985)
Burstein, A.I. Uspekhi Fiz. Nauk.143, 553 (1984); Avtometriya,5, 65;6, 72 (1978)
Beitmen, G., Erdei, A.: Tables of integral transformations, Vol. 1. Moscow: Nauka 1969
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Shalaev, V.M., Stockman, M.I. Fractals: optical susceptibility and giant raman scattering. Z Phys D - Atoms, Molecules and Clusters 10, 71–79 (1988). https://doi.org/10.1007/BF01425582
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01425582
PACS
- 64.60