Skip to main content
Log in

Fractals: optical susceptibility and giant raman scattering

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

A theory is developed which describes the optical properties of fractal clusters (i.e. of aggregates of non-trivial Hausdorff dimension consisting of interacting monomer particles). It is shown that with respect to these properties fractal clusters differ significantly from both gases and condensed media. The interaction between the monomers is assumed to be dipole-dipole. The theory is based on the self-consistent field equations; it takes into account the fluctuation nature of the fractal cluster (considerable probability for approach of monomers to each other despite an asymptotically zero integral density). An expression is obtained for the linear susceptibility. Combination of the monomers with the formation of a cluster entails the splitting, shift and broadening of the monomer spectra. These changes depend strongly on the fractal (Hausdorff) dimension of the cluster but do not depend on the number of monomers in it (for a cluster of non-trivial dimension). On the other hand, the monomers partially retain their individuality and the susceptibility — its quasi-resonance nature. Broadening, like the imaginary part of the susceptibility, does not depend on dissipation in an individual monomer. It is predicted that giant Raman scattering may occur at an impurity particle fixed near one of the cluster monomers when excitation takes place in the absorption band of the cluster. The enhancement factor for the scattering is also determined by the fractal dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandelbrot, B.M.: Fractals, form, chance, and dimension. San Francisco: Freeman 1977; The fractal geometry of Nature. San Francisco: Freeman 1982

    Google Scholar 

  2. Zeldovich, Ya.B., Sokolov, D.D., Uspekhi Fiz. Nauk146, 493 (1985)

    Google Scholar 

  3. Witten, T.A., Sander, L.M.: Phys. Rev. B27, 5686 (1983)

    Google Scholar 

  4. Meakin, P.: Phys. Rev. Lett.51, 1119 (1983); J. Chem. Phys.81, 4637 (1981)

    Google Scholar 

  5. Vicsek, T.: Phys. Rev. Lett.53, 2281 (1984)

    Google Scholar 

  6. Weitz, D.A., Oliveria, M.: Phys. Rev. Lett.52, 1433 (1984)

    Google Scholar 

  7. Feder, J., Joessang, T., Rosenquist, E.: Phys. Rev. Lett.53, 1403 (1984)

    Google Scholar 

  8. Schaefer, D.W., Martin, J.E., Wiltzius, P., Cannel, D.S.: Phys. Rev. Lett.52, 2371 (1984)

    Google Scholar 

  9. Ersh, I.G., Muratov, L.C., Novozhilov, S.Yu., Stockman, B.M., Stockman, M.I.: Doklady AN SSSR287, 1239 (1986); Preprint Inst. Autom. Electrometry N 292 (1985)

    Google Scholar 

  10. Elam, W.T., Wolf, S.A., Sprague, J. et al.: Phys. Rev. Lett.54, 701 (1985)

    Google Scholar 

  11. Isaacson, J., Lubensky, T.S.: J. Phys. Lett. (Paris)41, L469 (1981)

  12. Kreibig, U.: Z. Phys. D — Atoms, Molecules and Clusters3, 239 (1986)

    Google Scholar 

  13. Berry, M.V., Percival, I.C.: Opt. Acta, 1986,33, 577

    Google Scholar 

  14. Hui, P.M., Strond, D.: Phys. Rev. B33, 2163 (1986)

    Google Scholar 

  15. Shalaev, V.M., Stockman, M.I.: Zh. Eksp. Teor. Fiz.92, 509 (1987); Preprint Inst. Phys. N 391 F, Krasnoyarsk 1986

    Google Scholar 

  16. Yemelyanov, V.I., Koroteev, N.I.: Uspekhi Fiz. Nauk135, 345 (1981)

    Google Scholar 

  17. Moskovits, M.: Rev. Mod. Phys.57, 785 (1985)

    Google Scholar 

  18. Kittel, Ch.: Introduction to solid state physics, 4th Edn., Chap. 13. New York: J. Wiley 1973

    Google Scholar 

  19. Klimontovich, Yu.L., Osipov, M.A., Egibyan, L.V.: Kristallografiya30, 445 (1985)

    Google Scholar 

  20. Burstein, A.I. Uspekhi Fiz. Nauk.143, 553 (1984); Avtometriya,5, 65;6, 72 (1978)

    Google Scholar 

  21. Beitmen, G., Erdei, A.: Tables of integral transformations, Vol. 1. Moscow: Nauka 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalaev, V.M., Stockman, M.I. Fractals: optical susceptibility and giant raman scattering. Z Phys D - Atoms, Molecules and Clusters 10, 71–79 (1988). https://doi.org/10.1007/BF01425582

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01425582

PACS

Navigation