Inventiones mathematicae

, Volume 22, Issue 1, pp 63–67 | Cite as

On a geometric interpretation of multiplicity

  • C. P. Ramanujam


Geometric Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grothendieck, A., Dieudonné, J.: Elements de geometrie algebrique. Publ. I.H.E.S.Google Scholar
  2. 2.
    Kleiman, S.: Toward a numerical theory of ampleness. Ann. of Maths.84 (1966)Google Scholar
  3. 3.
    Zariski, O., Samuel, P.: Commutative algebra. Princeton: van Nostrand 1958Google Scholar
  4. 4.
    Rees, D., Northcott, D.G.: Reductions of ideals in local rings. Proc. Camb. Phil. Soc.50 (1954)Google Scholar
  5. 5.
    Rees, D.: The grade of an ideal or module. Proc. Camb. Phil. Soc.53 (1957)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • C. P. Ramanujam
    • 1
  1. 1.Madras-84India

Personalised recommendations