Inventiones mathematicae

, Volume 22, Issue 1, pp 51–62 | Cite as

Characterizations and metrization of proper analytic spaces

  • J. E. Jayne


Analytic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  2. 2.
    Auslander, L., C.C. Moore: Unitary Representations of Solvable Lie Groups. Amer. Math. Soc. Memoir No.62, 1966Google Scholar
  3. 3.
    Choquet, G.: EnsemblesH-analytiques etH-Sousliniens. Cas général et cas metrique. Ann. Inst. Fourier. Grenoble (9), 75–81 (1959)Google Scholar
  4. 4.
    Corson, H.H.: Metrizability of compact convex sets. Trans. Amer. Math. Soc.151, 589–596 (1970)Google Scholar
  5. 5.
    Frolík, Z.: A contribution to the descriptive theory of sets. Gen. Top. Rel. Mod. Anal. and Alg.I, 157–173, Prague, 1961Google Scholar
  6. 6.
    Frolík, Z.: A note onC(P) and Baire sets in compact and metrizable spaces. Bull. Acad. Polon. Sci.15, 779–784 (1967)Google Scholar
  7. 7.
    Frolík, Z.: A measurable map with analytic domain and metrizable range is quotient. Bull. Amer. Math. Soc.76, 1112–1117 (1970)Google Scholar
  8. 8.
    Frolík, Z.: A survey of separable descriptive theory of sets and spaces. Czech. Math. J.20 (95), 406–467 (1970)Google Scholar
  9. 9.
    Frolík, Z.: Stone-Weierstrass theorems forC(X) with the sequential topology. Proc. Amer. Math. Soc.27, 486–494 (1971)Google Scholar
  10. 10.
    Hausdorff, F.: Set Theory. New York: Chelsea 1957Google Scholar
  11. 11.
    Jayne, J.E.: Descriptive set theory in compact spaces. Notices Amer. Math. Soc. (17), 268 (1970)Google Scholar
  12. 12.
    Jayne, J.E.: Topological representations of measurable spaces. Gen. Top. Rel. Mod. Anal. and Alg. III, Prague, (1971)Google Scholar
  13. 13.
    Klyushin, V.L.: On perfect maps of paracompact spaces. Soviet Math. Dokl.5, 1583–1586 (1964)Google Scholar
  14. 14.
    Kuratowski, K.: Topology, Vol. I Academic Press, New York, 1966Google Scholar
  15. 15.
    MacGibbon, B.: A criterion for the metrizability of a compact convex set in terms of the set of extreme points. J. Functional Analysis11, 385–392 (1972)Google Scholar
  16. 16.
    Nagata, J.: Modern General Topology. New York: Wiley Interscience 1968Google Scholar
  17. 17.
    Nagata, J.: A note on Filipov's theorem. Proc. Japan Acad.45, 30–33 (1969)Google Scholar
  18. 18.
    Okuyama, A.: On metrizability ofM-spaces. Proc. Japan Acad.40, 176–179 (1964)Google Scholar
  19. 19.
    Sikorski, R.: On the inducing of homomorphisms by mapping. Fund. Math.36, 7–22 (1949)Google Scholar
  20. 20.
    Sikorski, R.: Boolean Algebras. Berlin-Heidelberg-New York: Springer 1960Google Scholar
  21. 21.
    Szpilrajn, E.: On the isomorphism and the equivalence of classes and sequences of sets. Fund. Math.32, 133–148 (1939)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • J. E. Jayne
    • 1
  1. 1.Department of MathematicsUniversity College LondonLondonEngland

Personalised recommendations