Advertisement

Inventiones mathematicae

, Volume 22, Issue 1, pp 1–40 | Cite as

On moduli of algebraic varieties. I

  • Herbert Popp
Article

Keywords

Algebraic Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L.: Analytic functions. Princeton p. 45, 1960.Google Scholar
  2. 2.
    Artin, M.: S.G.A.A. 1963–64. Institute des Hautes Etudes ScientifiquesGoogle Scholar
  3. 3.
    Borel, A.: Linear algebraic groups. New York: Benjamin 1969Google Scholar
  4. 4.
    Cartan, H.: Séminaire, Paris 1960/61Google Scholar
  5. 5.
    Curtis, C., Rainer, I.: Representation theory of finite groups and associative algebras. New York: Interscience 1966Google Scholar
  6. 6.
    Enriques, F.: Le superficie algébriche. Bologna 1949Google Scholar
  7. 7.
    Grothendieck, A.: Séminaire de Géométrie Algébriques die Bois Marie 1960/61. Lecture notes in Mathematics224. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  8. 8.
    Grothendieck, A.: Éléments de Géométrie Algébrique, I–IV. Publications MathématiquesGoogle Scholar
  9. 9.
    Grothendieck, A.: Fondements de la géométrie algébrique, Extraits du Séminaire Bourbaki, 1957–1962Google Scholar
  10. 10.
    Holmann, H.: Quotienten komplexer Räume. Math. Ann.142, 407–440 (1961)Google Scholar
  11. 11.
    Holmann, H.: Komplexe Räume mit komplexen Transformationsgruppen. Math. Ann.150, 327–360 (1963)Google Scholar
  12. 12.
    Iitaka, S.: OnD-dimension of algebraic varieties. J. Math. Soc. Japan23, 356–373 (1971)Google Scholar
  13. 13.
    Knutson, D.: Algebraic spaces. Lecture Notes in Mathematics203, Berlin-Heidelberg-New York: Springer 1971Google Scholar
  14. 14.
    Kodaira, K.: On compact analytic surfaces II–III. Ann. of Math.77 and78, p. 563–626 and 1–40 (1963)Google Scholar
  15. 15.
    Kodaira, K.: On the structure of compact analytic surfaces I, II, III, IV. Am. Journal of Math.86, 751–798 (1964);88, 682–721 (1966);90, 55–83 (1968);90, 1048–1066 (1968)Google Scholar
  16. 16.
    Kuranishi, M: On the structure of compact complex structures. Mimiographed Lecture notes, Tokyo UniversityGoogle Scholar
  17. 17.
    Matsumura, H.: On algebraic groups of birational transformations. Lincei-Rend. Sc. mat. e nat.,34, 151–154 (1963)Google Scholar
  18. 18.
    Matsusaka, T.: On the algebraic construction of the Picard variety I–II. Jap. J. Math.21, 217–236 (1951);22, 51–62 (1952)Google Scholar
  19. 19.
    Matsusaka, T.: Algebraic deformations of polarized varieties. Nagoja Journal of Math.31, 185–245 (1968)Google Scholar
  20. 20.
    Matsusaka, T.: On canonical polarized varieties II. Am. Journal of Math.92, 283–292 (1970)Google Scholar
  21. 21.
    Matsusaka, T., Mumford, D.: Two fundamental theorems on deformations of polarized varieties. Am. Journal of Math.86, 668–684 (1964)Google Scholar
  22. 22.
    Mumford, D.: Geometric invariant theory. Ergebnisse der Mathematik34. Berlin-Heidelberg-New York: Springer 1965Google Scholar
  23. 23.
    Mumford, D.: Introduction to the theory of moduli. 5. Nordic Summerschool in Math., Oslo 1970, mimeographed notesGoogle Scholar
  24. 24.
    Namikawa, Y., Ueno, K.: On singular fibres of families of curves of genus 2; to appearGoogle Scholar
  25. 25.
    Pjateckii-Sapiro, I. I.: Der Satz von Torelli für algebraische Flächen vom TypK3. Izvestija Akad. Nauk SSSR. Ser. mat.35, 530–572 (Russian) (1971)Google Scholar
  26. 26.
    Seidenberg, A.: The hyperplan sections of normal varieties. Transactions Am. Math. Soc.69, 357–386 (1950)Google Scholar
  27. 27.
    Seshadri, C.S.: Some results on the quotient space by an algebraic group of automorphisms. Math. Annalen149, 286–301 (1963)Google Scholar
  28. 28.
    Ueno, K.: On Kodaira dimension of certain algebraic varieties. Proceedings Jap. Acad.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Herbert Popp
    • 1
  1. 1.Institut für Mathematik und Informatik der UniversitätMannheim 1Federal Republic of Germany

Personalised recommendations