Skip to main content
Log in

The Brunn-Minkowski inequality in Gauss space

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Badrikian, A.: Séminaire sur les fonctions aléatories linéaires et les mesures cylindriques. Lecture Notes in Mathematics139. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  2. Badrikian, A., Chevet, S.: Mesures, cylindriques, espaces de Wiener et aléatoires gaussiennes. Lecture Notes in Mathematics379. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  3. Blumenthal, R. M., Getoor, R. K.: Markov processes and potential theory. New York: Academic Press 1968

    Google Scholar 

  4. Borell, C.: Convex measures on locally convex spaces. Ark. Mat.,12, 239–252 (1974)

    Google Scholar 

  5. Borell, C.: Convex measures on product spaces and some applications to stochastic processes. Institut Mittag-Leffler, No. 3 (1974)

  6. Borell, C.: Random linear functionals and subspaces of probability one. Institut Mittag-Leffler, No. 9 (1974)

  7. Itô, K., McKean, H. P., Jr.: Diffusion processes and their sample paths. Berlin-Heidelberg-New York: Springer 1965

    Google Scholar 

  8. Fernique, X.: Intégrabilité des vecteurs gaussiens, C. R. Acad. Sci. Paris, Ser. A,270, 1698–1699 (1970)

    Google Scholar 

  9. Marcus, M.B., Shepp, L.A.: Sample behavior of Gaussian processes, Proc. of the Sixth Berkeley Symposium on Math. Stat. and Probability.2, 423–441 Berkeley 1972

    Google Scholar 

  10. Martineau, A.: Sur le théorème du graphe fermé. C. R. Acad. Sci. Paris, Ser. A,263, 870–871 (1966)

    Google Scholar 

  11. McKean, H.P.: Geometry of differential space. Ann. of Prob., Vol.1, 197–276 (1973)

    Google Scholar 

  12. Landau, H.J., Shepp, L.A.: On the supremum of a Gaussian process. Sankhyā, Ser. A.32, 369–378 (1971)

    Google Scholar 

  13. LaPage, R.: Subgroups of paths and reproducting kernels. Ann. of Prob.1, 354–347 (1973)

    Google Scholar 

  14. Poincaré, H.: Calcul des probabilités. Paris: Gauthier-Villars 1912

    Google Scholar 

  15. Schmidt, E.: Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I. Math. Nach.I, 81–157 (1948)

    Google Scholar 

  16. Schwartz, L.: Sur le théorème du graphe fermé. C.R. Acad. Sci. Paris, Ser. A,263, 602–605 (1966)

    Google Scholar 

  17. Spitzer, F.: Electrostatic capacity, heat flow, and Brownian motion, Z. Wanrscheinlichkeitstheorie Verw. Geb.,3, 110–121 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borell, C. The Brunn-Minkowski inequality in Gauss space. Invent Math 30, 207–216 (1975). https://doi.org/10.1007/BF01425510

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01425510

Keywords

Navigation