Skip to main content
Log in

Parametric up-conversion from the infra-red

  • Invited Papers
  • 1970 International Quantum Electronics Conference
  • Published:
Opto-electronics Aims and scope Submit manuscript

Abstract

The subject of up-conversion in optically nonlinear crystals is reviewed. The characteristic properties of the detection of IR signals and images by frequency conversion to the visible and subsequent detection by a photocathode device are described. The way in which phase-matching normally restricts the spectral bandwidth to a few wavenumbers and the field of view to a few degrees is discussed. The conditions for achieving maximum image resolution are identified. Signal up-conversion should find application in the detection of weak IR radiation in astronomy and spectroscopy. Image up-conversion provides a novel “direct” method of viewing IR images. The ultimate temperature resolution when viewing a room temperature thermal scene is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing P. S. Pershan,Phys. Rev. 127 (1962) 1918–1939.

    Google Scholar 

  2. A. W. Smith andN. Braslau,IBM J. Res. Devel. 6 (1962) 361–362.

    Google Scholar 

  3. N. I. Adams andP. B. Schoefer,Proc. IEEE 51 (1963) 1366–1367.

    Google Scholar 

  4. F. M. Johnson andJ. A. Duardo,IEEE J. Quant. Elec. QE2 (1966) 296.

    Google Scholar 

  5. J. E. Midwinter andJ. Warner,J. Appl. Phys. 38, (1967) 519–523.

    Google Scholar 

  6. ,Bull. Am. Phys. Soc. 12 (1967) 61.

    Google Scholar 

  7. R. C. Miller andW. A. Nordland,IEEE J. Quant. Elect. QE3 (1967) 642–643.

    Google Scholar 

  8. J. Warner,App. Phys. Lett. 12 (1968) 222–224.

    Google Scholar 

  9. G. D. Boyd, T. J. Bridges, andE. G. Burkhardt,IEEE J. Quant. Elect. QE4 (1968) 515–519.

    Google Scholar 

  10. J. E. Midwinter,Appl. Phys. Letts. 14 (1969) 29–32.

    Google Scholar 

  11. Y. Klinger andF. Arams,IEEE Spectrum 6 (1969) 5.

    Google Scholar 

  12. ,Proc. IEEE 57 (1969) 1797–1798.

    Google Scholar 

  13. W. B. Gandrud andG. D. Boyd,Optics Communications 1 (1969) 187–190.

    Google Scholar 

  14. H. A. Smith andH. Mahr, Paper 5.10, 1970 IQEC, Kyoto, Japan.

    Google Scholar 

  15. J. E. Midwinter,Appl. Phys. Letts. 12 (1968) 68–70.

    Google Scholar 

  16. L. Gampel andF. M. Johnson,IEEE J. Quant. Elec. QE4 (1968) 354.

    Google Scholar 

  17. J. Warner,App. Phys. Letts. 13 (1968) 360–362.

    Google Scholar 

  18. E. S. Voronin, M. I. Divlekeyev, Yu. A. Il'inskii, andV. S. Solomatin,Sov. Phys. JETP 31 (1970) 29–33.

    Google Scholar 

  19. R. A. Andrews,IEEE J. Quant. Elec. QE5 (1969) 548–550.

    Google Scholar 

  20. A. H. Firester,J. Appl. Phys. 40 (1969) 4842–4849.

    Google Scholar 

  21. J. Warner,New Scientist (1969) 452–454.

  22. A. H. Firester,J. Appl. Phys.,41 (1970) 703–709.

    Google Scholar 

  23. J. F. Weller andR. A. Andrews,Opto-electronics 2 (1970) 171–176.

    Google Scholar 

  24. E. S. Voronin, M. I. Divlekeyev, andYu. A. Il'inskii,JETP Letts. 10 (1969) 108–110.

    Google Scholar 

  25. E. S. Voronin, M. I. Divlekeyev, Yu. A. Il'inskii, V. S. Solomatin, andR. V. Khoklov, Paper 5.9, 1970, IQEC, Kyoto, Japan.

    Google Scholar 

  26. M. Takatsuji,Japan J. Appl. Phys. 5 (1966) 389–400.

    Google Scholar 

  27. G. D. Boyd andD. A. Kleinman,J. Appl. Phys. 39 (1968) 3597–3639.

    Google Scholar 

  28. J. E. Midwinter,IEEE J. Quant. Elect. QE4 (1968) 716–720.

    Google Scholar 

  29. J. Warner,Opto-electronics 1 (1969) 25–28.

    Google Scholar 

  30. J. E. Midwinter,IEEE J. Quant. Elect. QE5 (1969) 130–132.

    Google Scholar 

  31. J. Warner,Proc. Joint Conf. On Lasers and Opto-electronics, IERE Conf., Proc. No. 14 (1969) p.25.

    Google Scholar 

  32. D. A. Kleinman andG. D. Boyd,J. Appl. Phys. 40 (1969) 546–567.

    Google Scholar 

  33. C. L. Tang,Phys. Rev. 182 (1969) 367–374.

    Google Scholar 

  34. A. H. Firester,Opto-electronics 2 (1969) 128–133.

    Google Scholar 

  35. ,J. Appl. Phys. 40 (1969) 4842–4849.

    Google Scholar 

  36. ,40 (1969) 4849–4853.

    Google Scholar 

  37. ,41 (1970) 703–709.

    Google Scholar 

  38. R. A. Andrews,IEEE J. Quant. Elect. QE6 (1970) 68–80.

    Google Scholar 

  39. R. L. Carmen, J. Hanus, andD. Weinberg,Appl. Phys. Letts. 11 (1967) 250–253.

    Google Scholar 

  40. M. D. Martin andE. L. Thomas,Phys. Letts. 25A (1967) 637–8.

    Google Scholar 

  41. M. D. Martin andE. L. Thomas,J. Phys. C. (Solid State Phys.) 2 (1969) 577–582.

    Google Scholar 

  42. J. E. Midwinter andJ. Warner,Brit. J. Appl. Phys. 16 (1965) 1135–1142.

    Google Scholar 

  43. F. R. Nash, G. D. Boyd, M. Sargent III, andP. M. Bridenbaugh,J. Appl. Phys. 41 (1970) 2564–2576.

    Google Scholar 

  44. J. Warner, to be published: ‘Proposed methods for correcting chromatic aberrations in LiNbO3 image up-converters’.

  45. W. Bardsley andO. Jones,J. Cryst. Growth 3 (1968) 268–271.

    Google Scholar 

  46. K. F. Hulme andJ. Warder, to be published: ‘The most effective optical geometry for image upconversion of 10.6μm to the visible’.

  47. J. Warner, unpublished Ministry of Aviation Supply work: ‘Relative effectiveness of image upconversion for infra-red imaging’.

  48. J. Warner andK. F. Hulme, to be published: ‘Possibilities of Thermal Imaging by IR to Visible Up-Conversion’.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, J. Parametric up-conversion from the infra-red. Opto-electronics 3, 37–48 (1971). https://doi.org/10.1007/BF01423512

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01423512

Keywords

Navigation