Skip to main content
Log in

Deterministic approximations of probability inequalities

  • Published:
Zeitschrift für Operations-Research Aims and scope Submit manuscript

Abstract

A simple general framework for derivingexplicit deterministic approximations of probability inequalities of the formP(ξ⩾a) ⩽ α is presented. These approximations are based on limited parametric information about the involved random variables (such as their mean, variance, range or upper bound values). First the case of a single random variableξ is analysed, followed by the cases of independent and dependent summands\(\xi = \mathop \sum \limits_1^n \xi _i \). As examples of possible applications, a stochastic extension of the “knapsack problem” and the stochastic linear programming problem with separate chance-constraints are investigated: we provide approximate deterministic surrogates for these problems.

Zusammenfassung

Es wird ein Rahmen zur Ableitung expliziter deterministischer Approximation für Wahrscheinlichkeitsungleichungen der FormP(ξ⩾a)⩽ α angegeben. Diese Approximationen basieren auf begrenzter parametrischer Information über die beteiligten Zufallsvariablen (wie ihr Erwartungswert, Varianz, Wertebereich oder obere Schranken). Zuerst wird der Fail einer Zufallsvariablenξ analysiert, sodann werden Summen von unabhängigen Summanden\(\xi = \mathop \sum \limits_{i = 1}^n \xi _i \) betrachtet. Als Beispiele für mögliche Anwendungen wird eine stochastische Erweiterung des Rucksack-problems untersucht sowie stochastische lineare Programme mit separablen Wahrscheinlichkeitsrestriktionen. Für diese Probleme werden näherungsweise deterministische Ersatzprobleme angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahadur RR, Rao R (1960) On deviations of the sample mean. Annals of Mathematical Statistics 31:1015–1027

    Article  MathSciNet  MATH  Google Scholar 

  • Bennett G (1962) Probability inequalities for the sum of independent random variables. Journal of the American Statistical Association 57:33–45

    Article  MATH  Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Chernoff H (1952) A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Annals of Mathematical Statistics 23:493–507

    Article  MathSciNet  MATH  Google Scholar 

  • Dawson DA, Sankoff D (1967) An inequality for probabilities. Proceedings of the American Mathematical Society 18:504–507

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster MAH (1980) Introduction to stochastic programming. In: Dempster MAH (ed) Stochastic programming. Academic Press, London, pp 3–59

    Google Scholar 

  • Dupacova J (1980) On minimax decision rules in stochastic programming. In: Prekopa A (ed) Mathematical methods of operations research, vol 1. Publishing House of the Academy of Sciences, Budapest, pp 38–48

    Google Scholar 

  • Dupacova J (1987) The minimax approach to stochastic programming and an illustrative application. Stochastics 20:73–88

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, vol II (2nd ed). John Wiley and Sons, New York

    MATH  Google Scholar 

  • Galambos J (1977) Bonferroni inequalities. Annals of Probability 5:577–581

    Article  MathSciNet  MATH  Google Scholar 

  • Godwin HJ (1955) On generalizations of Tchebychef's inequality. Journal of the American Statistical Association 50:923–945

    Article  MathSciNet  MATH  Google Scholar 

  • Hoeffding W (1963) Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58:13–30

    Article  MathSciNet  MATH  Google Scholar 

  • Huang C, Ziemba W, Ben-Tal A (1977) Bounds on the expectation of a convex function of a random variable: with applications to stochastic programming. Operations Research 25:315–325

    Article  MathSciNet  MATH  Google Scholar 

  • Kall P, Stoyan D (1982) Solving stochastic programming problems with recourse including error bounds. Mathematische Operationsforschung und Statistik, Series Optimization 13:431–447

    Article  MathSciNet  MATH  Google Scholar 

  • Kankova V (1977) Optimum solution of a stochastic optimization problem with unknown parameters. In: Transactions of the 7th Prague Conference (1974). Academia, Prague, pp 239–244

    Google Scholar 

  • Karlin S, Studden WJ (1966) Tchebycheff systems: with applications in analysis and statistics. Interscience, New York

    MATH  Google Scholar 

  • Klein Haneveld WK (1985) Duality in stochastic linear and dynamic programming. PhD Thesis, University of Groningen

  • Kwerel SM (1975) Most stringent bounds on aggregated probabilities of partially specified dependent probability systems. Journal of the American Statistical Association 70:472–479

    Article  MathSciNet  MATH  Google Scholar 

  • Lootsma FA, Meisner J, Schellemanns F (1986) Multi-criteria decision analysis as an aid to the strategic planning of energy R&D. European Journal of Operational, Research 25:216–234

    Article  Google Scholar 

  • Marshall AW, Olkin I (1979) Inequalities: theory of majorization and its applications. Academic Press, New York

    MATH  Google Scholar 

  • Madansky A (1960) Inequalities for stochastic linear programming problems. Management Science 6:197–204

    Article  MathSciNet  MATH  Google Scholar 

  • Móri TF, Székely GJ (1985) A note on the background of several Bonferroni-Galambos-type in-equalities. Journal of Applied Probability 22:836–843

    MathSciNet  MATH  Google Scholar 

  • Okamoto M (1958) Some inequalities relating to the partial sum of binomial probabilities. Annals of the Institute of Statistical Mathematics 10:29–35

    Article  MathSciNet  MATH  Google Scholar 

  • Percus OE, Percus JK (1985) Probability bounds on the sum of independent nonidentically distributed binomial random variables. SIAM Journal on Applied Mathematics 45:621–640

    Article  MathSciNet  MATH  Google Scholar 

  • Platz O (1985) A sharp upper probability bound for the occurence of at leastm out ofn events. Journal of Applied Probability 22:978–981

    Article  MathSciNet  MATH  Google Scholar 

  • Pintér J (1985) A modified Bernstein-technique for estimating noise-perturbed function values. Calcolo 22:241–247

    Article  MathSciNet  MATH  Google Scholar 

  • Prohorov YuV (1959) An extremal problem in probability theory. Theory of Probability and Its Applications 4:201–203

    Article  MathSciNet  Google Scholar 

  • Sathe YS, Pradhan M, Shah SP (1980) Inequalities for the probability of the occurence of at leastm out ofn events. Journal of Applied Probability 17:1127–1132

    Article  MathSciNet  MATH  Google Scholar 

  • Seppala Y (1975) On a stochastic multi-facility location problem. AIEE Transactions 7:56–62

    Article  Google Scholar 

  • Sinha SM (1963) Stochastic programming. PhD Thesis, University of California, Berkeley

    Google Scholar 

  • Szántai T (1985) Computing the value of multivariate probability distribution functions. PhD Thesis, Eötvös L. University, Budapest

    Google Scholar 

  • Wets R (1983) Stochastic programming: solution techniques and approximation schemes. In: Bachem A, Grötschel M, Korte B (eds) Mathematical programming: the state of the art. Springer-Verlag, Berlin Heidelberg New York, pp 566–603

    Chapter  Google Scholar 

  • Yudin DB (1980) Problems and methods of stochastic programming. Publishing House “Sovietskoye Radio”, Moscow (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pintér, J. Deterministic approximations of probability inequalities. ZOR - Methods and Models of Operations Research 33, 219–239 (1989). https://doi.org/10.1007/BF01423332

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01423332

Key words

Navigation