Abstract
A simple general framework for derivingexplicit deterministic approximations of probability inequalities of the formP(ξ⩾a) ⩽ α is presented. These approximations are based on limited parametric information about the involved random variables (such as their mean, variance, range or upper bound values). First the case of a single random variableξ is analysed, followed by the cases of independent and dependent summands\(\xi = \mathop \sum \limits_1^n \xi _i \). As examples of possible applications, a stochastic extension of the “knapsack problem” and the stochastic linear programming problem with separate chance-constraints are investigated: we provide approximate deterministic surrogates for these problems.
Zusammenfassung
Es wird ein Rahmen zur Ableitung expliziter deterministischer Approximation für Wahrscheinlichkeitsungleichungen der FormP(ξ⩾a)⩽ α angegeben. Diese Approximationen basieren auf begrenzter parametrischer Information über die beteiligten Zufallsvariablen (wie ihr Erwartungswert, Varianz, Wertebereich oder obere Schranken). Zuerst wird der Fail einer Zufallsvariablenξ analysiert, sodann werden Summen von unabhängigen Summanden\(\xi = \mathop \sum \limits_{i = 1}^n \xi _i \) betrachtet. Als Beispiele für mögliche Anwendungen wird eine stochastische Erweiterung des Rucksack-problems untersucht sowie stochastische lineare Programme mit separablen Wahrscheinlichkeitsrestriktionen. Für diese Probleme werden näherungsweise deterministische Ersatzprobleme angegeben.
Similar content being viewed by others
References
Bahadur RR, Rao R (1960) On deviations of the sample mean. Annals of Mathematical Statistics 31:1015–1027
Bennett G (1962) Probability inequalities for the sum of independent random variables. Journal of the American Statistical Association 57:33–45
Berger JO (1985) Statistical decision theory and Bayesian analysis. Springer-Verlag, New York
Chernoff H (1952) A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Annals of Mathematical Statistics 23:493–507
Dawson DA, Sankoff D (1967) An inequality for probabilities. Proceedings of the American Mathematical Society 18:504–507
Dempster MAH (1980) Introduction to stochastic programming. In: Dempster MAH (ed) Stochastic programming. Academic Press, London, pp 3–59
Dupacova J (1980) On minimax decision rules in stochastic programming. In: Prekopa A (ed) Mathematical methods of operations research, vol 1. Publishing House of the Academy of Sciences, Budapest, pp 38–48
Dupacova J (1987) The minimax approach to stochastic programming and an illustrative application. Stochastics 20:73–88
Feller W (1971) An introduction to probability theory and its applications, vol II (2nd ed). John Wiley and Sons, New York
Galambos J (1977) Bonferroni inequalities. Annals of Probability 5:577–581
Godwin HJ (1955) On generalizations of Tchebychef's inequality. Journal of the American Statistical Association 50:923–945
Hoeffding W (1963) Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58:13–30
Huang C, Ziemba W, Ben-Tal A (1977) Bounds on the expectation of a convex function of a random variable: with applications to stochastic programming. Operations Research 25:315–325
Kall P, Stoyan D (1982) Solving stochastic programming problems with recourse including error bounds. Mathematische Operationsforschung und Statistik, Series Optimization 13:431–447
Kankova V (1977) Optimum solution of a stochastic optimization problem with unknown parameters. In: Transactions of the 7th Prague Conference (1974). Academia, Prague, pp 239–244
Karlin S, Studden WJ (1966) Tchebycheff systems: with applications in analysis and statistics. Interscience, New York
Klein Haneveld WK (1985) Duality in stochastic linear and dynamic programming. PhD Thesis, University of Groningen
Kwerel SM (1975) Most stringent bounds on aggregated probabilities of partially specified dependent probability systems. Journal of the American Statistical Association 70:472–479
Lootsma FA, Meisner J, Schellemanns F (1986) Multi-criteria decision analysis as an aid to the strategic planning of energy R&D. European Journal of Operational, Research 25:216–234
Marshall AW, Olkin I (1979) Inequalities: theory of majorization and its applications. Academic Press, New York
Madansky A (1960) Inequalities for stochastic linear programming problems. Management Science 6:197–204
Móri TF, Székely GJ (1985) A note on the background of several Bonferroni-Galambos-type in-equalities. Journal of Applied Probability 22:836–843
Okamoto M (1958) Some inequalities relating to the partial sum of binomial probabilities. Annals of the Institute of Statistical Mathematics 10:29–35
Percus OE, Percus JK (1985) Probability bounds on the sum of independent nonidentically distributed binomial random variables. SIAM Journal on Applied Mathematics 45:621–640
Platz O (1985) A sharp upper probability bound for the occurence of at leastm out ofn events. Journal of Applied Probability 22:978–981
Pintér J (1985) A modified Bernstein-technique for estimating noise-perturbed function values. Calcolo 22:241–247
Prohorov YuV (1959) An extremal problem in probability theory. Theory of Probability and Its Applications 4:201–203
Sathe YS, Pradhan M, Shah SP (1980) Inequalities for the probability of the occurence of at leastm out ofn events. Journal of Applied Probability 17:1127–1132
Seppala Y (1975) On a stochastic multi-facility location problem. AIEE Transactions 7:56–62
Sinha SM (1963) Stochastic programming. PhD Thesis, University of California, Berkeley
Szántai T (1985) Computing the value of multivariate probability distribution functions. PhD Thesis, Eötvös L. University, Budapest
Wets R (1983) Stochastic programming: solution techniques and approximation schemes. In: Bachem A, Grötschel M, Korte B (eds) Mathematical programming: the state of the art. Springer-Verlag, Berlin Heidelberg New York, pp 566–603
Yudin DB (1980) Problems and methods of stochastic programming. Publishing House “Sovietskoye Radio”, Moscow (in Russian)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Pintér, J. Deterministic approximations of probability inequalities. ZOR - Methods and Models of Operations Research 33, 219–239 (1989). https://doi.org/10.1007/BF01423332
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF01423332