Skip to main content
Log in

Electrical conductivity of polyacetylene: nonsolitonic mechanism

  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Results of coordinated measurements of DC and microwave conductivity of polyacetylene doped with iodine to moderate levels are presented and discussed within a hopping model using the extended pair approximation. At low temperatures the DC data follow Mott'sT −1/4 law indicating similarities between polyacetylene and amorphous semiconductors. A detailed analysis gives a qualitative description of the evolution of the density of states near the Fermi energy upon doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For recent reviews see eg Wegener G (1981) Angew Chem 93:352, Seeger KH (1982) Angew Makromol Chem 109:227, Roth S, Menke K (1983) Kunststoffe 73:520, Chien JCW (1984) Polyacetylene, Chemistry, Physics and Material Science, Academic Press, New York-London, and the proceedings of the Conference on Synthetic Conductors and Superconductors at Low Dimensions, Les Arcs, 1982, published in (1983) J de Physique, Colloque C3, Supplement No 6, Tome 44

    Google Scholar 

  2. Tsukamot J, Ohigashi H, Matsumura K, Takahashi A (1982) Synth Metals 4:177

    Google Scholar 

  3. Nigrey PJ, MacInnes DA Jr, Nairns DP, MacDiarmid AG, Heeger AJ (1981) J Electrochem Soc 128:1651

    Google Scholar 

  4. Carter FL (ed) (1982) Molecular Electronic Devices, Marcel Dekker Inc, New York-Basel, Carter FL (1983) J Vac Sci Technol B1:959

    Google Scholar 

  5. Peo M, Roth S, Dransfeld K, Tieke B, Gross H, Grupp A, Sixl H (1980) Solid State Commun 35:119, Ikehata S, Kaufer J, Woerner T, Pron A, Druy MA, Sivak A, Heeger AJ, MacDiarmid AG (1980) Phys Rev Lett 45:1123

    Google Scholar 

  6. Summerfield S, Butcher PN (1982) J Phys C, Solid State Phys 15:7003

    Google Scholar 

  7. Ito T, Shirakawa H, Ikeda S (1975) J Polym Sci, Polym Chem Ed 13:1943

    Google Scholar 

  8. Menke K, private communication

  9. Buranov LI, Shchegolev IF (1971) Prip Tek Eskp 2:171

    Google Scholar 

  10. Ehinger K, Summerfield S, Bauhofer W, Roth S (1984) Phys C, Solid State Phys 17:3753

    Google Scholar 

  11. Müller HK, Hocker J, Menke K, Ehinger K, Roth S, to be published in Synth Metals

  12. Ehinger K, Bauhofer W, Menke K, Roth S (1983) J Physique 44, C3:115

    Google Scholar 

  13. Riekel C, Hässlin HW, Menke K, Roth S (1982) J Chem Phys 77:4254

    Google Scholar 

  14. Stamm M, private communication

  15. Kuzmany H (1983) J Physique 44, C3:255

    Google Scholar 

  16. Knoll P, Kuzmany H, private communication

  17. Ehinger K, Roth S, to be published

  18. Mihaly G, Vansco G, Pekker S, Janossy A (1980) Synth Met 1:357

    Google Scholar 

  19. Rice MJ (1979) Phys Lett A71:152; Su WP, Schrieffer JR, Heeger AJ (1979) Phys Rev Lett 42:1698

    Google Scholar 

  20. Mott NF, Davis EA (1979) Electronic Processes in Non-Crystalline Solids, Clarendon Press, Oxford, 2nd ed

    Google Scholar 

  21. Butcher PN (1980) Phil Mag 42:799

    Google Scholar 

  22. Epstein AJ, Bigelow RW, Rommelmann H, Gibson HW, Feldblum A (1984) Proc of Int Conf Phys Chem Low Dim Synth Metals, Abano Terme, to be published in Mol Cryst Liq Cryst

  23. Chung TC, Moraes F, Food JD, Heeger AJ (1984) Phys Rev B29:2341

    Google Scholar 

  24. Kivelson S (1982) Phys Rev B25:3798

    Google Scholar 

  25. Chroboczek JA, Summerfield S (1983) J Physique 44:C3–517

    Google Scholar 

  26. Summerfield S, Chroboczek JA (1983) Solid State Commun 53:129

    Google Scholar 

  27. Ehinger K, Summerfield S, to be published

  28. Summerfield S, Butcher PN (1983) J Phys C, Solid State Phys 16:295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution presented during the spring conference of the Deutsche Physikalische Gesellschaft, March 12–17, 1984 in Münster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehinger, K., Summerfield, S. & Roth, S. Electrical conductivity of polyacetylene: nonsolitonic mechanism. Colloid & Polymer Sci 263, 714–719 (1985). https://doi.org/10.1007/BF01422852

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01422852

Key words

Navigation