Skip to main content
Log in

Monte Carlo simulation of spin-aligned atomic hydrogen

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The density dependent ground-state properties of spin-aligned atomic hydrogen are studied using the Monte Carlo technique for 32 and 128 atoms in a cube with periodic boundary conditions. The one-particle density matrix, the two-body correlation function, the structure and pairing function have been evaluated and are compared to other recent work. The total number of particles in the condensate is largest at a density ρ≈6·10−3 Å−3 and amounts to ρ0=2.03·10−3Å−3. In addition, the elementary excitation spectrum is discussed in the framework of the Brueckner-Sawada theory. The correct initial slope of the spectrum is obtained from variational results on the structure function. From these results one may tentatively conclude that the roton like part of the spectrum disappears at densities less than 10−2 Å−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a recent review on the properties of spin polarized quantum systems we refer to: J. Phys. C7 (1980)

  2. Dugan, J.V., Jr., Etters, R.D.: J. Chem. Phys.59, 6171 (1973)

    Google Scholar 

  3. Etters, R.D., Dugan, J.V., Jr., Palmer, R.W.: J. Chem. Phys.62, 313 (1975)

    Google Scholar 

  4. Silvera, I.F., Walraven, J.T.M.: Phys. Rev. Lett.44, 164 (1980)

    Google Scholar 

  5. Walraven, J.T.M., Silvera, I.F.: Phys. Rev. Lett.44, 168 (1980)

    Google Scholar 

  6. Walraven, J.T.M., Silvera, I.F., Matthey, A.P.M.: Phys. Rev. Lett.45, 449 (1980)

    Google Scholar 

  7. Silvera, I.F.: private communication

  8. Miller, M.D., Nosanow, L.H.: Phys. Rev. B15, 4376 (1977)

    Google Scholar 

  9. Lantto, L.J., Siemens, P.J.: Phys. Lett.68 B, 308 (1977)

    Google Scholar 

  10. Lantto, L.J., Nieminen, R.M.: J. Low Temp. Phys.37, 1 (1979)

    Google Scholar 

  11. Ristig, M.L.: to appear in: Proc. Int. School of Physics “Enrico Fermi” (1981)

  12. Ristig, M.L., Lam, P.M.: to appear in: Proc. Internat. Conf. “Recent progress in many-body theories”, Mexico (1981)

  13. Etters, R.D., Danilowicz, R.L., Palmer, R.W.: J. Low. Temp. Phys.33, 305 (1978)

    Google Scholar 

  14. Friend, D.G., Etters, R.D.: J. Low Temp. Phys.39, 409 (1980)

    Google Scholar 

  15. Freed, J.H.: J. Chem. Phys.72, 1414 (1980)

    Google Scholar 

  16. Danilowicz, R.L., Dugan, J.V., Jr., Etters, R.D.: J. Chem. Phys.65, 498 (1976)

    Google Scholar 

  17. Lam, P.M., Ristig, M.L.: Phys. Rev. B20, 1960 (1979)

    Google Scholar 

  18. McMillan, W.L.: Phys. Rev. A138, 442 (1965)

    Google Scholar 

  19. Ceperley, D.M., Kalos, M.H.: In: Topics in Current Physics. Binder, K. (ed.), Vol. 7, p. 145, Berlin, Heidelberg, New York: Springer-Verlag 1979

    Google Scholar 

  20. Feenberg, E.: Ann. Phys.84, 128 (1974)

    Google Scholar 

  21. Reatto, L.: Phys. Rev.183, 334 (1969)

    Google Scholar 

  22. Ristig, M.L., Clark, J.W.: Phys. Rev. B14, 2875 (1976)

    Google Scholar 

  23. Kolos, W., Wolniewicz, L.: J. Chem. Phys.43, 2429 (1965)

    Google Scholar 

  24. Kolos, W., Wolniewicz, L.: Chem. Phys. Lett.24, 457 (1974)

    Google Scholar 

  25. Ristig, M.L.: Nucl. Phys. A317, 163 (1979)

    Google Scholar 

  26. Jackson, H.W., Feenberg, E.: Ann. Phys.15, 266 (1961)

    Google Scholar 

  27. Bogoliubov, N.N.: J. Phys. USSR9, 23 (1947)

    Google Scholar 

  28. Brueckner, K.A., Sawada, K.: Phys. Rev.106, 1128 (1957)

    Google Scholar 

  29. Feynman, R.P.: In: Progress in Low Temperature Physics. Gorter, C.J. (ed.), Vol.1, p. 17. Amsterdam: North-Holland Publ. Comp 1955

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entel, P., Anlauf, J. Monte Carlo simulation of spin-aligned atomic hydrogen. Z. Physik B - Condensed Matter 42, 191–198 (1981). https://doi.org/10.1007/BF01422022

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01422022

Keywords

Navigation