Skip to main content
Log in

Effect of self-phase modulation on the evolution of picosecond pulses in a Nd:glass laser

  • Papers
  • Published:
Opto-electronics Aims and scope Submit manuscript

Abstract

Many authors have reported disparate characteristics of pulses from Nd:glass mode-locked lasers. From these it has become clear that the well-developed pulse has a frequency sweep or subpicosecond structure and yields a contrast ratio less than the ideal 3 in the two-photon-fluorescence measurement. On the other hand, the early pulse is well behaved, has simple temporal and spectral structure, and yields a contrast ratio of 3 in TPF. The measurements are almost all indirect. Theories explaining the early pulse have appeared, but these fail for the fully developed pulse.

The authors present time-resolved spectrograms, covering pulse development from 1/50 peak intensity, where the pulse is well mode-locked, to full development, where spectral structure is complex. A numerical analysis, including self-phase modulation, non-linear absorption, amplification and dispersion, yields results that qualitatively agree very well with the experimental records, suggesting that self-phase modulation plays an important role in the evolution of mode-locked pulses in a Nd:glass laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bloembergen, M. J. Colles, J. Reintjes andC. S. Wang,Indian J. Pure and Appl. Phys. 9 (1971) 874–876; and other references cited therein.

    Google Scholar 

  2. R. L. Carman, F. Shimizu, C. S. Wang andN. Bloembergen,Phys. Rev. A2 (1970) 60–72.

    Google Scholar 

  3. S. Jayaraman andC. H. Lee,Appl. Phys. Lett. 20 (1972) 392–395.

    Google Scholar 

  4. A. J. Demaria, D. A. Stetser andH. Heynau,ibid 8 (1966) 174–176. For a recent review seeA. J. Demaria, W. H. Glenn, Jun., M. J. Brienz AandM. E. Mack,Proc. IEEE 57 (1969) 2–25.

    Google Scholar 

  5. M. Maier, W. Kaiser andJ. A. Giordmaine,Phys. Rev. Lett. 17 (1966) 1275–1277;J. A. Armstrong,Appl. Phys. Lett. 10 (1967) 16–18.

    Google Scholar 

  6. R. C. Eckardt andC. H. Lee,Appl. Phys. Lett. 15 (1969) 425–427.

    Google Scholar 

  7. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro andK. W. Wecht,ibid 11 (1967) 216–218.

    Google Scholar 

  8. N. G. Basov, P. G. Kryukóv andV. S. Letokhov, ‘Ultrashort Light Pulses’' FIAN preprint (1969) 122.

  9. A. J. Demaria, D. A. Stetser andW. H. Glenn, Jun.,Science 156 (1967) 1557–1568.

    Google Scholar 

  10. J. A. Fleck, Jun.,Phys. Rev. B1 (1970) 84–100.

    Google Scholar 

  11. Michel A. Duguay, J. W. Hansen andStanley L. Shapiro,IEEE J. Quantum Electron. QE-6 (1970) 725–743.

    Google Scholar 

  12. V. V. Korobkin, A. A. Malyutin andA. M. Prokhorov,JETP Lett. 12 (1970) 150–152.

    Google Scholar 

  13. R. C. Eckardt, C. H. Lee andJ. N. Bradford,Appl. Phys. Lett. 19 (1971) 420–423.

    Google Scholar 

  14. E. B. Treacy,Phys. Lett. 28A (1968) 34–35.

    Google Scholar 

  15. D. J. Bradley, G. H. C. New andS. J. Caughey,ibid 30A (1969) 78–79.

    Google Scholar 

  16. S. L. Shapiro andM. A. Duguay,ibid 28A (1969) 698–699.

    Google Scholar 

  17. H. P. Weber,ibid 27A (1968) 321–322.

    Google Scholar 

  18. J. R. Klauder, M. A. Duguay, J. A. Giordmaine andS. L. Shapiro,Appl. PhyS. Lett. 13 (1968) 174–176.

    Google Scholar 

  19. Robert A. Fisher andJ. A. Fleck, Jun.,ibid 15 (1969) 287–290.

    Google Scholar 

  20. R. H. Picard andP. Schweitzer,Phys. Rev. A1 (1970) 1803–1818.

    Google Scholar 

  21. O. Svelto,Appl. Phys. Lett. 17 (1970) 83–85.

    Google Scholar 

  22. D. von der Linde, O. Bernecker andW. Kaiser,Optics Commun. 2 (1970) 149–152.

    Google Scholar 

  23. D. von der Linde,IEEE J. Quantum Electron. QE-8 (1972) 328–338.

    Google Scholar 

  24. R. C. Eckardt,ibid (to be published January 1974).

    Google Scholar 

  25. E. Garmire andA. Yariv,ibid QE-3 (1967) 222–226.

    Google Scholar 

  26. W. H. Glenn andM. J. Brienza,Appl. Phys. Lett. 10 (1967) 221–224.

    Google Scholar 

  27. M. C. Richardson,IEEE J. Quantum Electron. QE-9 (1973) 768–772.

    Google Scholar 

  28. P. B. Mauer,Optical Spectra (4th Quarter 1967) 61–63.

  29. M. Hercher,Appl. Opt. 6 (1967) 947–954.

    Google Scholar 

  30. R. I. Scarlet, J. F. Figueira andH. Mahr,Appl. Phys. Lett. 13 (1968) 71–73.

    Google Scholar 

  31. D. J. Bradley, G. H. C. New andS. J. Caughey,Optics Commun. 2 (1970) 41–44.

    Google Scholar 

  32. A. Owyoung, A. W. Hellwarth andN. George,Phys. Rev. B5 (1972) 628–633.

    Google Scholar 

  33. O. Svelto,Optics Commun. 3 (1971) 105–106.

    Google Scholar 

  34. R. G. Brewer andC. H. Lee,Phys. Rev. Lett. 21 (1968) 267–270.

    Google Scholar 

  35. Robert A. Fisher, P. L. Kelley andT. K. Gustafson,Appl. Phys. Lett. 14 (1969) 140–143.

    Google Scholar 

  36. E. B. Treacy,ibid 17 (1970) 14–16.

    Google Scholar 

  37. Idem, ibid 14 (1969) 112–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckardt, R.C., Lee, C.H. & Bradford, J.N. Effect of self-phase modulation on the evolution of picosecond pulses in a Nd:glass laser. Opto-electronics 6, 67–85 (1974). https://doi.org/10.1007/BF01421990

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01421990

Keywords

Navigation