Skip to main content
Log in

Microstructure and melting in fractions of polyethylene characterized with the aid of a novel folded-chain-lamella model

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Folded-chain-lamellae are considered as “cooperative units” with frozen matter flow and with a locally heterogeneous atomistic order the degree of which is reversibly regulated by surface-melting or surface crystallization. A consequent thermodynamic treatment of restricted micro-phase equilibrium in semicrystalline fractions of polyethylene of different molecular weights can be shown to deliver a characterization of such nonequilibrium states by relating additional internal variables to parameters of the microstructure (DSC-measurements, electron-micrographs, SAXS). What appears to be very satisfactory is the conclusion that the excess situation produced by noncrystallizable defects in the semicrystalline samples is clearly related to the original state of order in the melt: Approximative invariance of penetration is directly elucidating that any matter flow in the regime of the chains of sufficient length is frozen during folded-chain crystallization. Molecular-weight effects in semicrystalline fractions of polyethylene can be interpreted on these lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Keller, A., Phil. Mag.2, 1171 (1957).

    Google Scholar 

  2. Fischer, E. W., Z. Naturforsch.12a, 753 (1957).

    Google Scholar 

  3. Till, P. H. jun., J. Polym. Sci.24, 30 (1957).

    Google Scholar 

  4. Wunderlich, B., Macromolecular Physics, Academic Press, New York and London, 1973, 1976, 1980.

    Google Scholar 

  5. Basset, D. C., F. C. Frank, A. Keller, Phil. Mag.8, 1753 (1963).

    Google Scholar 

  6. Geil, P. H., Polymer Single Crystalls, Wiley (Interscience) New York 1963.

    Google Scholar 

  7. Holland, W. F., S. B. Mitchell, W. L. Hunter, P. H. Lindenmeyer, J. Polym. Sci.62, 145 (1962).

    Google Scholar 

  8. Kern, W., J. Davidovits, K. J. Rauterkurs, G. F. Schmidt, Macromol. Chem.43, 106 (1961).

    Google Scholar 

  9. Zahn, H., W. Pieper, Angew. Chem.73, 246 (1961).

    Google Scholar 

  10. Fischer, E. W., Koll. Z. u. Polym.231, 458 (1968).

    Google Scholar 

  11. Schelten, J., G. D. Wignall, D. G. H. Ballard, G. W. Longmann, Polymer18, 1111 (1977).

    Google Scholar 

  12. Keller, A., Rep. Progr. in Phys.31, 623 (1968).

    Google Scholar 

  13. Cornier, C., B. Wunderlich, J. Polym. Sci. A2,4, 666 (1966).

    Google Scholar 

  14. Keith, H. D., F. J. Padden jr., R. G. Vadmisky, Science150, 1026 (1965).

    Google Scholar 

  15. Keith, H. D., F. J. Padden jr., R. G. Vadmisky, J. Polym. Sci.A2, 4, 267 (1966).

    Google Scholar 

  16. Keith, H. D., F. J. Padden jr., R. G. Vadmisky, J. Appl. Phys.42, 4585 (1971).

    Google Scholar 

  17. Kilian, H. G., D. Klattenhoff, Progr. Colloid & Polym. Sci.255, 10 (1977).

    Google Scholar 

  18. Heise, B., H. G. Kilian, W. Wulff, Progr. Colloid & Polym. Sci.67, 143 (1980).

    Google Scholar 

  19. Stamm, M., E. W. Fischer, M. Dettenmaier, Farady Discuss.68, 263 (1979).

    Google Scholar 

  20. Fatou, J. G., L. Mandelkern, J. Phys. Chem.69, 417 (1964).

    Google Scholar 

  21. Maxfield, J., L. Mandelkern, Macromolecules10, 1141 (1977).

    Google Scholar 

  22. Mandelkern, L., J. Polym. Sci. B,4, 447 (1966).

    Google Scholar 

  23. Mandelkern, L., J. M. Price, M. Gopalan, J. G. Faton, J. Polym. Sci.A2, 4, 385 (1966).

    Google Scholar 

  24. Voigt-Martin, I. G., E. W. Fischer, L. Mandelkern, J. Polym. Sci.18, 2347 (1980).

    Google Scholar 

  25. Kilian, H. G., Coll. & Polym. Sci.252, 353 (1974).

    Google Scholar 

  26. Kilian, H. G., Progr. Coll. & Polym. Sci.58, 53 (1975).

    Google Scholar 

  27. Kanig, G., Koll. Z. u. Z. Polym.233, 831 (1969).

    Google Scholar 

  28. Flory, P. J., J. Am. Chem. Soc.84, 2857 (1962).

    Google Scholar 

  29. Zachmann, H. G., Koll. Z. u. Z. Polym.231, 504 (1969).

    Google Scholar 

  30. Zachmann, H. G., A. Peterlin, J. Macromol. Sci.B3, 495 (1969).

    Google Scholar 

  31. Kilian, H. G., Macromol. Chem. Suppl.3, 277 (1969).

    Google Scholar 

  32. Mandelkern, L., Crystallization of Polymers, McGraw-Hill, New York 1964.

    Google Scholar 

  33. Ewert, W. M., H. G. Zachmann, A. Peterlin, Koll. Z. u. Z. Polym.250, 1187 (1972).

    Google Scholar 

  34. Zachmann, H. G., Fortschr. d. Hochpolymerforschung3, 581 (1964).

    Google Scholar 

  35. Münster, A., Ric. Sci. Suppl.25, 648, (1955).

    Google Scholar 

  36. Baur, H., Coll. & Polym. Sci.256, 833 (1978).

    Google Scholar 

  37. Zachmann, H. G., P. Spellucci, Koll. Z. u. Z. Polym.213, 39 (1966).

    Google Scholar 

  38. Kanig, G., Coll. & Polym. Sci.260, 356 (1982).

    Google Scholar 

  39. Baur, H., Coll. & Polym. Sci.260, 370 (1982).

    Google Scholar 

  40. Haase, R., Thermodynamik der Mischphasen, Springer, Berlin 1980.

    Google Scholar 

  41. Meyer, H., H. G. Kilian, Progr. Coll. & Polym. Sci.64, 166 (1978).

    Google Scholar 

  42. Meyer, H., H. G. Kilian, Progr. Coll. & Polym. Sci.64, 154 (1978).

    Google Scholar 

  43. Wenig, W., Thesis, University Ulm 1974.

  44. Hosemann, R., S. N. Bagchi, Direct Analysis of Diffraction by Matter, North Holland Publ. Comp., Amsterdam 1962.

    Google Scholar 

  45. Cantow, M. J. R., Polymer Fractionation, Academic Press, New York 1967.

    Google Scholar 

  46. Kratky, A., G. Porod, Z. Skala, Acta Physica Austria8, 76 (1960).

    Google Scholar 

  47. Kanig, G., Koll. Z. u. Z. Polym.251, 782 (1973).

    Google Scholar 

  48. Guinier, A., X-Ray Diffraction, W. H. Freeman and Co., San Francisco 1963.

    Google Scholar 

  49. Gubler, M. G., A. J. Kovacs, J. Polym. Sci.34, 551 (1959).

    Google Scholar 

  50. Illers, K. H., H. Hendus, Macromol. Chem.113, 1 (1968).

    Google Scholar 

  51. Brown, R. G., R. K. Eby, J. Appl. Phys.35, 1156 (1964).

    Google Scholar 

  52. Lindenmeyer, P. H., J. Chem. Phys.46, 1902 (1967).

    Google Scholar 

  53. Lindenmeyer, P. H., H. Beumer, R. Hosemann, Polym. Eng. Sci.19, 40, 45, 51 (1979).

    Google Scholar 

  54. Wobser, G., P. C. Hägele, Ber. Bunsenges.74, 896 (1970).

    Google Scholar 

  55. Großmann, H. P., Thesis, University Ulm (1977).

  56. Schelten, J., M. Stamm, Macromolecules14, 818 (1981).

    Google Scholar 

  57. Kirste, R. G., W. A. Kruse, J. Schelten, J. Macromol. Chem.162, 299 (1972).

    Google Scholar 

  58. Lieser, G., E. W. Fischer, K. Ibel, J. Polym. Sci., Polym. Lett. Ed.13, 39 (1975).

    Google Scholar 

  59. Baleard, D. G. H., P. Ceshire, G. W. Longmann, J. Schelten, Polymer19, 379 (1978).

    Google Scholar 

  60. Treloar, L. R. G., The Physics of Rubber Elasticity, 3rd. Ed., Clarendon Press, Oxford (1975).

    Google Scholar 

  61. Flory, P. J., Principles of Polymer Chemistry, Cornell University Press Ithacon, N. Y. 1953).

    Google Scholar 

  62. de Gennes, P. G., Scaling concepts in Polymer Physics, Cornell Univ. Press Ithaca, N. Y. 1979.

    Google Scholar 

  63. Kilian, H. G., Polymer22, 209 (1981).

    Article  Google Scholar 

  64. Kilian, H. G., Coll. & Polym. Sci.260, 895 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Wir danken Frau Asbach für die Anfertigung der elektronenmikroskopischen Aufnahmen.

Wir danken der Deutschen Forschungsgemeinschaft für finanzielle Unterstützung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holl, B., Heise, B. & Kilian, H.G. Microstructure and melting in fractions of polyethylene characterized with the aid of a novel folded-chain-lamella model. Colloid & Polymer Sci 261, 978–992 (1983). https://doi.org/10.1007/BF01421706

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01421706

Key words

Navigation