Skip to main content
Log in

Performance of optical flow techniques

  • Systems And Experiment
  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, matching, energy-based, and phase-based methods. Our comparisons are primarily empirical, and concentrate on the accuracy, reliability, and density of the velocity measurements; they show that performance can differ significantly among the techniques we implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adelson, E.H., and Bergen, J.R. 1985. Spatiotemporal energy models for the perception of motion,J. Opt. Soc. Amer. A 2: 284–299.

    Google Scholar 

  • Adelson, E.H., and Bergen, J.R. 1986. The extraction of spatiotemporal energy in human and machine vision,Proc. IEEE Workshop on Visual Motion, Charleston, pp. 151–156.

  • Aloimonos, J., and Brown, C.M. 1984. Direct processing of curvilinear sensor motion from a sequence of perspective images.Proc. 2nd Workshop on Computer Vision, Annapolis, pp. 72–77.

  • Aloimonos, Y., and Duric, Z. 1992. Active egomotion estimation: a qualitative approach,Proc. Europ. Conf. Comput. Vis., Ligure, Italy, pp. 497–510.

  • Anandan, P. 1987. Measuring Visual Motion from Image Sequences. Ph.D. dissertation, COINS TR 87-21, Univ. of Massachusetts, Amherst, MA.

    Google Scholar 

  • Anandan, P. 1989. A computational framework and an algorithm for the measurement of visual motion,Intern. J. Comput. Vis. 2: 283–310.

    Google Scholar 

  • Barman, H., Haglund, L., Knutsson, H., and Granlund, G. 1991. Estimation of velocity, acceleration and disparity in time sequences,Proc. IEEE Workshop on Visual Motion, Princeton, pp. 44–51.

  • Barron, J.L., Fleet, D.J., and Beauchemin, S.S. 1993. Performance of optical flow techniques, Tech. Rept. TR299, Dept. of Computer Science, University of Western Ontario; and RPL-TR-9107, Dept. of Computing Science, Queens University, July 1992 (revised July 1993).

  • Barron, J.L., Fleet, D.J., Beauchemin, SS., and Burkitt, T. 1992. Performance of optical flow techniques,Proc. Conf. Comp. Vis. Patt. Recog., Champaign, June, pp. 236–242.

  • Barron, J.L., Jepson, A.D., and Tsotsos, J.K. 1990. The feasibility of motion and structure from noisy time-varying image velocity information,Intern. J. Comput. Vis. 5: 239–269.

    Google Scholar 

  • Beaudet, P.R. 1978. Rotationally invariant image operators.Proc. 4th Intern. Conf. Patt. Recog., Tokyo, pp. 579–583.

  • Bigun, J., Granlund, G., and Wiklund, J. 1991. Multidimensional orientation estimation with applications to texture analysis and optical flow.IEEE Trans. Patt. Anal. Mach. Intell. 13: 775–790.

    Google Scholar 

  • Burt, P.J., and Adelson, E.H. 1983. The Laplacian pyramid as a compact image code,IEEE Trans. Communications 31, pp. 532–540.

    Google Scholar 

  • Burt, P.J., Yen, C., and Xu, X. 1983. Multiresolution flow-through motion analysis,Proc. Conf. Comput. Vis. Patt. Recog., Washington, pp. 246–252.

  • Buxton, B., and Buxton, H. 1984. Computation of optic flow from the motion of edge features in image sequences,Image Vis. Comput. 2: 59–74.

    Google Scholar 

  • Cippola, R., and Blake, A. 1992. Surface orientation and time to contact from image divergence and deformation,Proc. 2nd Europ. Conf. Comput. Vis., Ligure, Italy, pp. 187–202.

  • Duncan, J.H., and Chou, T.C. 1988. Temporal edges: The detection of motion and the computation of optical flow,Proc. 2nd Intern. Conf. Comput. Vis., Tampa, pp. 374–382.

  • Dutta, R., Manmatha, R., Williams, L., and Riseman, E.M. 1989. A data set for quantitative motion analysis,Proc. Conf. Comput. Vis. Patt. Recog., San Diego, pp. 159–164.

  • Fennema, C., and Thompson, W. 1979. Velocity determination in scenes containing several moving objects,Comput. Graph. Image Process. 9: 301–315.

    Google Scholar 

  • Fleet, D.J. 1992.Measurement of Image Velocity. Kluwer Academic Publishers: Norwell, MA.

    Google Scholar 

  • Fleet, D.J., and Jepson, A.D. 1990. Computation of component image velocity from local phase information,Intern. J. Comput. Vis. 5: 77–104.

    Google Scholar 

  • Fleet, D.J., and Jepson, A.D. 1993. Stability of phase information,IEEE Trans. Patt. Anal. Mach. Intell. (in press).

  • Fleet, D.J., and Langley, K. 1993. Toward real-time optical flow,Proc. Vision Interface, Toronto, pp. 116–124 (also see Tech. Rept.: RPL-TR-9308, Robotics and Perception Laboratory, Queen's University).

  • Girosi, F., Verri, A., and Torre, V. 1989. Constraints for the computation of optical flow,Proc. IEEE Workshop on Visual Motion, Irvine, pp. 116–124.

  • Glazer, F., Reynolds, G., and Anandan, P. 1983. Scene matching through hierarchical correlation,Proc. Conf. Comput. Vis. Patt. Recog., Washington, pp. 432–441.

  • Grzywacz, N.M., and Yuille, A.L. 1990. A model for the estimation of local image velocity by cells in the visual cortex,Proc. Roy. Soc. London B 239: 129–161.

    Google Scholar 

  • Haglund, L. 1992. Adaptive Multidimensional Filtering. Ph.D. dissertation, Dept. Electrical Engineering, Univ. of Linkoping (ISSN 0345-7524).

  • Heeger, D.J. 1987. Model for the extraction of image flow,J. Opt. Soc. Amer. A 4: 1455–1471.

    Google Scholar 

  • Heeger, D.J. 1988. Optical flow using spatiotemporal filters,Intern. J. Comput. Vis. 1: 279–302.

    Google Scholar 

  • Hildreth, E.C. 1984. The computation of the velocity field,Proc. Roy. Soc. London B 221: 189–220.

    Google Scholar 

  • Horn, B.K.P. 1986.Robot Vision. MIT Press: Cambridge, MA.

    Google Scholar 

  • Horn, B.K.P., and Schunck, B.G. 1981. Determining optical flow,Artificial Intelligence 17: 185–204.

    Google Scholar 

  • Horn, B.K.P., and Weldon, Jr., E.J. 1988. Direct methods for recovering motion,Intern. J. Comput. Vis. 2: 51–76.

    Google Scholar 

  • Jahne, B. 1987. Image sequence analysis of complex physical objects: nonlinear small scale water surface waves,Proc. 1st Intern. Conf. Comput. Vis., London, pp. 191–200.

  • Jepson, A.D., and Fleet, D.J. 1991. Phase singularities in scale-space,Image Vis. Comput. 9: 338–343.

    Google Scholar 

  • Jepson, A.D., and Heeger, D.J. 1990. Subspace methods for recovering rigid motion II: Theory, Tech. Rept. RBCV-TR-90-36, Dept. of Computer Science, University of Western Ontario. (To appear inInt. J. Comput. Vis.).

  • Kearney, J.K., Thompson, W.B., and Boley, D.L. 1987. Optical flow estimation: An error analysis of gradient-based methods with local optimization,IEEE Trans. Patt. Anal. Artif. Mach. Intell. 9:229–244.

    Google Scholar 

  • Little, J.J., and Verri, A. 1989. Analysis of differential and matching methods for optical flow,IEEE Workshop on Visual Motion, Irvine, CA, pp. 173–180.

  • Little, J.J., Bulthoff, H.H., and Poggio, T.A. 1988. Parallel optical flow using local voting.Proc. 2nd Intern. Conf. Comput. Vis., Tampa, pp. 454–459.

  • Lucas, B.D. 1984. Generalized Image Matching by the Method of Differences. Ph.D. dissertation, Dept. of Computer Science, Carnegie-Mellon University.

  • Lucas, B., and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision.Proc. DARPA Image Understanding Workshop, pp. 121–130.

  • Marr, D., and Hildreth, E.C. 1980. Theory of edge detection,Proc. Roy. Soc. London, B 207: 187–217.

    Google Scholar 

  • Nagel, H.H. 1983. Displacement vectors derived from second-order intensity variations in image sequences,Comput. Graph. Image Process. 21: 85–117.

    Google Scholar 

  • Nagel, H.-H. 1987. On the estimation of optical flow: Relations between different approaches and some new results,Artificial Intelligence 33: 299–324.

    Google Scholar 

  • Nagel, H.-H. 1989. On a constraint equation for the estimation of displacement rates in image sequences,IEEE Trans. Patt. Anal. Mach. Intell. 11: 13–30.

    Google Scholar 

  • Nagel, H.H., and Enkelmann, W. 1986. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences.IEEE Trans. Patt. Anal. Mach. Intell. 8: 565–593.

    Google Scholar 

  • Negahdaripour, S., and Horn, B.K.P. 1987. Direct passive navigation,IEEE Trans. Patt. Anal. Mach. Intell. 9: 168–176.

    Google Scholar 

  • Santen, J.P.H. van, and Sperling, G. 1985. Elaborated Reichardt detectors,J. Opt. Soc. Amer. A 2: 300–321.

    Google Scholar 

  • Schunck, B.G. 1984. The motion constraint equation for optical flow,Proc. 7th Intern. Conf. Patt. Recog., Montreal, pp. 20–22.

  • Schunck, B.G. 1986. Image flow continuity equations for motion and density,Proc. IEEE Workshop on Visual Motion, Charleston, pp. 89–94.

  • Simoncelli, E.P. 1993. Distributed Representation and Analysis of Visual Motion. Ph.D. dissertation, Dept. of Electrical Engineering and Computer Science, MIT.

  • Simoncelli, E.P., Adelson, E.H., and Heeger, D.J. 1991. Probability distributions of optical flow.Proc. Conf. Comput. Vis. Patt. Recog., Maui, pp. 310–315.

  • Singh, A. 1990. An estimation-theoretic framework for image-flow computation,Proc. 3rd Intern. Conf. Comput. Vis., Osaka, pp. 168–177.

  • Singh, A. 1992.Optic Flow Computation: A Unified Perspective. IEEE Computer Society Press.

  • Tistarelli, M., and Sandini, G. 1990. Estimation of depth from motion using anthropomorphic visual sensor,Image Vis. Comput. 8: 271–278.

    Google Scholar 

  • Tretiak, O., and Pastor, L. 1984. Velocity estimation from image sequences with second order differential operators,Proc. 7th Intern. Conf. Patt. Recog., Montreal, pp. 20–22.

  • Uras, S., Girosi, F., Verri, A., and Torre, V. 1988. A computational approach to motion perception,Biol. Cybern. 60: 79–97.

    Google Scholar 

  • Verri, A., and Poggio, T. 1987. Against quantitative optical flow,Proc. 1st Intern. Conf. Comput. Vis., London, pp. 171–180.

  • Watson, A.B., and Ahumada, A.J. 1985. Model of human visual-motion sensing,J. Opt. Soc. Amer. A 2: 322–342.

    Google Scholar 

  • Waxman, A.M., and Wohn, K. 1985. Contour evolution, neighbourhood deformation and global image flow: Planar surfaces in motion, Intern.J. Robotics Res. 4: 95–108.

    Google Scholar 

  • Waxman, A.M., Wu, J., and Bergholm, F. 1988. Convected activation profiles and receptive fields for real time measurement of short range visual motion,Proc. Conf. Comput. Vis. Patt. Recog., Ann Arbor, pp. 771–723.

  • Willick, D., and Yang, Y.H. 1991. Experimental evaluation of motion constraints equations.Comput. Vis. Graph. Image Process.: Image Understanding 54: 206–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barron, J.L., Fleet, D.J. & Beauchemin, S.S. Performance of optical flow techniques. Int J Comput Vision 12, 43–77 (1994). https://doi.org/10.1007/BF01420984

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01420984

Keywords

Navigation