Toward color image segmentation in analog VLSI: Algorithm and hardware

Abstract

Standard techniques for segmenting color images are based on finding normalized RGB discontinuities, color histogramming, or clustering techniques in RGB or CIE color spaces. The use of the psychophysical variable hue in HSI space has not been popular due to its numerical instability at low saturations. In this article, we propose the use of a simplified hue description suitable for implementation in analog VLSI. We demonstrate that if theintegrated white condition holds, hue is invariant to certain types of highlights, shading, and shadows. This is due to theadditive/shift invariance property, a property that other color variables lack. The more restrictive uniformly varying lighting model associated with themultiplicative/scale invariance property shared by both hue and normalized RGB allows invariance to transparencies, and to simple models of shading and shadows. Using binary hue discontinuities in conjunction with first-order type of surface interpolation, we demonstrate these invariant properties and compare them against the performance of RGB, normalized RGB, and CIE color spaces. We argue that working in HSI space offers an effective method for segmenting scenes in the presence of confounding cues due to shading, transparency, highlights, and shadows. Based on this work, we designed and fabricated for the first time an analog CMOS VLSI circuit with on-board phototransistor input that computes normalized color and hue.

This is a preview of subscription content, access via your institution.

References

  1. Abdou, I.E., and Pratt, W.K. 1979. Quantitative design and evaluation of enhancement/thresholding edge detectors,Proc. IEEE 67(5): 753–763.

    Google Scholar 

  2. Bajcsy, R., Lee, S.W., and Leonardis, A. 1990. Color image segmentation with detection of highlights and local illumination induced by inter-reflections.Proc. 10th Intern. Conf. Patt. Recog. B, Atlantic City, pp. 785–790.

  3. Barth, M., Parthasarathy, S., Wang, J., Hu, E., Hackwood, S., and Beni, G. 1986. A color vision system for microelectronics: Application to oxide thickness measurement,Proc. Inter. Conf. Robot. Autom., San Francisco, pp. 1242–1247.

  4. Berlin, B., and Kay, P. 1969.Basic Color Terms: Their Universality and Evolution, University of California.

  5. Canny, J. 1986. A computational approach to edge detection.IEEE Tran. Patt. Anal. Mach. Intell. 8(6): 679–698.

    Google Scholar 

  6. Celenk, M. 1990. A color clustering technique for image segmentation,Comput. Vis., Graph. Image Process. 52: 145–170.

    Google Scholar 

  7. Cook, R.L., and Torrance, K.E. 1981. A reflectance model for computer graphics,Computer Graphics 15(3): 307–316.

    Google Scholar 

  8. Daily, M.J. 1989. Color image segmentation using Markov random fields,Proc. Conf. Comput. Vis. Patt. Recog., San Diego, pp. 304–312.

  9. Delbruck, T. 1993. Investigations of analog VLSI visual transduction and motion processing, Ph.D. Thesis, California Institute of Technology.

  10. Desimone, R., Schein, S.J., Moran, J., and Ungerleider, L.G. 1985. Contour, color and shape analysis beyond the striate cortex,Vision Research 25: 441.

    Google Scholar 

  11. De Valois, R.L., and De Valois, K.K. 1975. Neural coding of color,Handbook of Perception, vol. VSeeing, Academic Press: San Diego, pp. 117–166.

    Google Scholar 

  12. Dillon, P., Brault, A., Horak, J., Garcia, E., Martin, T., and Light, W. 1985. Fabrication and performance of color filter arrays for solid-state imagers,IEEE Trans. Electron Devices 25(2): 97–101.

    Google Scholar 

  13. Foley, J.D., VanDam, A., Feiner, S.K., and Hughes, J.F. 1990.Computer Graphics: Principles and Practice, Addison-Wesley: Reading, MA.

    Google Scholar 

  14. Geiger, D., and Girosi, F. 1990. Parallel and deterministic algorithms from MRFs: Surface reconstruction,IEEE Trans. Patt. Anal. Mach. Intell. 13(5): 401–412.

    Google Scholar 

  15. Geman, S., and Geman, D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,IEEE Trans. Patt. Anal. Mach. Intell. 5: 721–741.

    Google Scholar 

  16. Genz, S.E. 1990. Real time chip set simplifies color image processing,Image Processing Handbook (8): 56–59, Data Translation™, Marlboro, MA.

  17. Gilbert, B. 1975. Translinear circuits: A proposed classification,Electronics Letters 11(1): 14–16.

    Google Scholar 

  18. Gershon, R. 1985. Aspects of perception and computation in color vision,Comput. Vis. Graph. Image Process. 32: 245–278.

    Google Scholar 

  19. Gershon, R., Jepson, A., and Tsotsos, J. 1986. Ambient illumination and the determination of material changes,J. Opt. Soc. Amer. A 3(10): 1700–1707.

    Google Scholar 

  20. Harris, J.G., Koch, C., and Luo, J. 1990a. A two-dimensional analog VLSI circuit for detecting discontinuities in early vision,Science 248: 1209–1211.

    Google Scholar 

  21. Harris, J.G., Koch, C., Staats, E., and Luo, J. 1990b. Analog hardware for detecting discontinuities in early vision,Intern. J. Comput. Vis. 4: 211–233.

    Google Scholar 

  22. Healey, G. 1989. Using color for geometry-insensitive segmentation,J. Opt. Soc. Amer. A 6(6): 920–937.

    Google Scholar 

  23. Healey, G., and Binford, T.O., 1987. The role and use of color in a general vision system.DARPA-Image Understanding Workshop, Los Angeles, pp. 599–613.

  24. Hurlbert, A., and Poggio, T. 1989. A network for image segmentation using color, InAdvances in Neural Information Processing Systems I, pp. 297–304, Morgan Kaufmann: San Mateo.

    Google Scholar 

  25. Ingling, C.R., and Tsou, B.H. 1977. Orthogonal combination of the three visual channels,Vision Research 17: 1075–1082.

    Google Scholar 

  26. Joblove, G.H., and Green, D. 1978. Color spaces for computer graphics,Computer Graphics 12(3): 20–25.

    Google Scholar 

  27. Jain, A.K. 1989.Fundamentals of Digital Image Processing, Prentice-Hall: Englewood Cliffs, NJ.

    Google Scholar 

  28. Kender, J. 1976. Saturation, hue, and normalized color: Calculation, digitization, and use, Computer Science Technical Report, Carnegie-Mellon University.

  29. Klinker, G.J., Shafer, S.A., and Kanade, T. 1988. The measurement of highlights in color images,Intern. J. Comput. Vis. 2: 7–32.

    Google Scholar 

  30. Klinker, G.J., Shafer, S.A., and Kanade, T. 1990. A physical approach to color image understanding,Intern. J. Comput. Vis. 4: 7–38.

    Google Scholar 

  31. Koch, C. 1989. Seeing chips: Analog VLSI circuits for computer vision,Neural Computation, 1: 184–200.

    Google Scholar 

  32. Koch, C., Moore, A., Bair, W., Horiuchi, T., Bishofberger, B., and Lazzaro, J. 1991. Computing motion using analog VLSI vision chips: An experimental comparison among four approaches,IEEE Workshop on Visual Motion, Princeton, October, pp. 312–324.

  33. Lenny, P., and D'Zmura, M. 1988. Mechanisms of color vision,CRC Crit. Rev. Neurobiol. 3(4): 333–400.

    Google Scholar 

  34. Mead, C. 1989.Analog VLSI and Neural Systems, Addison-Wesley: Reading, MA.

    Google Scholar 

  35. Nevatia, R. 1977. A color edge detector and its use in scene segmentation,IEEE Trans. Syst. Man, Cyb. 7(11): 820–826.

    Google Scholar 

  36. Ohlander, R.B. 1976. Analysis of Natural Scenes, Ph.D. thesis, Carnegie Mellon University.

  37. Ohta, Y., Kanade, T., and Sakai, T. 1980. Color information for region segmentation,Comput. Graph. Image Process. 13: 222–241.

    Google Scholar 

  38. Perez, F.A., and Koch, C. 1992. Toward color image segmentation in analog VLSI,Rockwell 4th Annu. Tech. Conf. Cont. Sig. Process. pp. 246–263.

  39. Perez, F.A., and Koch, C. 1992. Segmenting color images using hue, CNS Memo 20, California Institute of Technology, 16 October.

  40. Phong, B.T. 1975. Illumination for computer generated pictures,Commu. ACM 18(6): 311–317.

    Google Scholar 

  41. Poggio, T., Torre, V., and Koch, C. 1985. Computational vision and regularization theory,Nature 317(6035): 314–319.

    Google Scholar 

  42. Poggio, T., Gamble, E.B., and Little, J.J. 1988. Parallel integration of vision modules,Science 242: 436–440.

    Google Scholar 

  43. Rubin, J.M., and Richards, W.A. 1982. Color vision and image intensities: When are changes material?Biological Cybernetics 45: 215–226.

    Google Scholar 

  44. Rubin, J.M., and Richards, W.A. 1984. Color vision: Representing material categories, AI Memo No. 764, Massachusetts Institute of Technology.

  45. Schwarz, M.W., Cowan, W.B., and Beatty, J.C. 1987. Experimental comparison of RGB, YIQ, LAB, and opponent color models,ACM Trans. Graphics 6(2): 123–158.

    Google Scholar 

  46. Seevink, E. 1988. Analysis and synthesis of translinear integrated circuits, Elsevier: New York.

    Google Scholar 

  47. Shafer, S.A. 1985. Using color to separate reflection components,COLOR Res. Appl. 10(4): 210–218.

    Google Scholar 

  48. Sivilotti, M.A., Mahowald, and Mead, C.A. 1987. Real-time visual computation using analog CMOS processing arrays, 1987 Stanford Conf. VLSI, MIT Press: Cambridge, pp. 295–312.

    Google Scholar 

  49. Smith, A.R. 1978. Color gamut transform pairs,Computer Graphics 12(3): 12–19.

    Google Scholar 

  50. Terzopoulos, D. 1985. Computing visible-surface representations, AI Memo No. 800, Massachusetts Institute of Technology.

  51. Tominaga, S. 1987. Expansion of color images using three perceptual attributes,Patt. Recog. Lett. 6: 77–85.

    Google Scholar 

  52. Tominaga, S. 1990. A color classification method for color images using a uniform color space,10th Intern. Conf. Patt. Recog., Atlantic City, pp. 803–807.

  53. Toumazou, C., Lidgey, F., and Haigh, D, eds. 1990.Analogue IC Design: The Current Mode Approach, Short Run Press, England.

    Google Scholar 

  54. Wolfe, W.L., and Zissis, G.J. 1985.The Infrared Handbook, Environmental Research Institute of Michigan: Ann Arbor.

    Google Scholar 

  55. Wright, W.A. 1989. A Markov random field approach to data fusion and colour segmentation,Image Vis. Comput. 7(2): 144–150.

    Google Scholar 

  56. Wyszecki, G., and Stiles, W.S. 1982.Color Science: Concepts and Methods, Quantitative Data and Formulae, Wiley: New York.

    Google Scholar 

  57. Zeki, S. 1983. Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours,Neuroscience 9(4): 741–765.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perez, F., Koch, C. Toward color image segmentation in analog VLSI: Algorithm and hardware. Int J Comput Vision 12, 17–42 (1994). https://doi.org/10.1007/BF01420983

Download citation

Keywords

  • Image Segmentation
  • Color Image
  • Color Histogramming
  • VLSI Circuit
  • Surface Interpolation