Skip to main content
Log in

Iterative continuation and the solution of nonlinear two-point boundary value problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we present a unified function theoretic approach for the numerical solution of a wide class of two-point boundary value problems. The approach generates a class of continuous analog iterative methods which are designed to overcome some of the essential difficulties encountered in the numerical treatment of two-point problems. It is shown that the methods produce convergent sequences of iterates in cases where the initial iterate (guess),x 0, is “far” from the desired solution. The results of some numerical experiments using the methods on various boundary value problems are presented in a forthcoming paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antosiewicz, H. A.: Newton's method and boundary value problems. J. Comput Syst. Science2, 177 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  2. — Rheinboldt, W. C.: Numerical analysis and functional analysis, chap. 14 of Survey of numerical analysis, J. Todd, ed. New York: McGraw Hill 1962.

    Google Scholar 

  3. Athans, M., Falb, P. L.: Optimal control: an introduction to the theory and its applications. New York: McGraw Hill 1966.

    MATH  Google Scholar 

  4. Bellman, R. E., Kalaba, R. E.: Quasilinearization and nonlinear boundary-value problems. New York: American Elsevier Publishing Co., Inc. 1965.

    MATH  Google Scholar 

  5. Bosarge, W. E., Jr.: Some numerical results for iterative continuation in nonlinear boundary-value problems. IBM Journal of Research and Development, July 1971.

  6. — Falb, P. L.: Infinite dimensional multipoint methods and the solution of boundary value problems. Numerische Mathematik14 Heft 3, 264–286 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  7. Bosarge, W. E. A continuous analog for some Newton's method convergence theorems. IBM Scientific Center Report No. 320.2381, February 15, 1970.

  8. Coddington, E. A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw Hill 1966.

    MATH  Google Scholar 

  9. Collatz, L.: Funktionanalysis und Numerische Mathematik. Berlin-Göttingen-Heidelberg-New York: Springer 1964.

    Book  MATH  Google Scholar 

  10. Davidenko, D. F.: Inversion of matrices by the method of variation of parameters. Soviet Mathematics1 (2), 279–282 (1960).

    MathSciNet  MATH  Google Scholar 

  11. Dieudonne, Jean: Foundations of modern analysis. New York: Academic Press 1960.

    MATH  Google Scholar 

  12. Falb, P. L., Dejong, J. L.: Some successive approximation methods in control and oscillation theory. New York: Academic Press 1969.

    Google Scholar 

  13. Ficken, F. A.: The continuation method for functional equations. Comm. Pure Appl. Math.4, 435–456 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  14. Gavurin, M. K.: Nonlinear functional equations and continuous analogs of iterative methods. Izv. VUZov. Serv. Mat.5 (6), 18–31 (1958).

    MathSciNet  Google Scholar 

  15. Hale, Jack: Differential equations. New York: John Wiley, Inc. 1969.

    MATH  Google Scholar 

  16. Henrici, P.: Discrete variable methods in ordinary differential equations. New York: John Wiley, Inc. 1962.

    MATH  Google Scholar 

  17. Jacovlev, M. N.: The solution of systems of nonlinear equations by a method of differentiation with respect to a parameter. Zh. Vychisl. Mat. i Mat. Fiz.4 (1), 146–149 (1964).

    Google Scholar 

  18. Kantorovich, L. V., Akilov, G. P.: Functional analysis in normed spaces. New York: McMillan 1964.

    MATH  Google Scholar 

  19. Kato, Tosio: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966.

    Book  MATH  Google Scholar 

  20. Lozinski, S. M.: Inverse functions, implicit functions, and the solution of equations. Vestnik Leningrad G. U., Ser. Mat., Mat. i. astron., Issue 2, No. 7, 131–142 (1957).

    MathSciNet  Google Scholar 

  21. Meyer, G. H.: On solving nonlinear equations with a one parameter operator imbedding. J. of SIAM Num. Anal.5, No. 4, 739–752 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  22. Szarski, Jacek: Differential inequalities. Warszawa: Polska Akademia Nauk, Monografie matematyczne 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosarge, W.E. Iterative continuation and the solution of nonlinear two-point boundary value problems. Numer. Math. 17, 268–283 (1971). https://doi.org/10.1007/BF01420898

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01420898

Keywords

Navigation