Acta Neurochirurgica

, Volume 138, Issue 4, pp 425–434 | Cite as

Brain tissue pO2 in relation to cerebral perfusion pressure, TCD findings and TCD-CO2-reactivity after severe head injury

  • J. Dings
  • J. Meixensberger
  • J. Amschler
  • B. Hamelbeck
  • K. Roosen
Clinical Articles


As a reliable continuous monitoring of cerebral blood flow and/or cerebral oxygen metabolism is necessary to prevent secondary ischaemic events after severe head injury (SHI) the authors introduced brain tissue pO2 (ptiO2) monitoring and compared this new parameter with TCD-findings, cerebral perfusion pressure (CPP) and CO2-reactivity over time on 17 patients with a SHI. PtiO2 reflects the balance between the oxygen offered by the cerebral blood flow and the oxygen consumption by the brain tissue. According to TCD-CO2reactivity PtiO2-CO2-reactivity was introduced.

After initally (day 0) low mean values (ptiO2 7.7 +/−2.6 mmHg, TCD 60.5 +/−32.0 cm/sec and CPP 64.5 +/−16.0 mmHg/, ptiO2 increased together with an increase in blood flow velocity of the middle cerebral artery and CPP. The relative hyperaemic phase on days 3 and 4 was followed by a decrease of all three parameters. Although TCD-CO2-reactivity was except for day 0 (1.4+/−1.5%), sufficient. ptiO2-CO2-reactivity sometimes showed so-called paradox reactions from day 0 till day 3, meaning an increase of ptiO2 on hyperventilation. Thereafter ptiO2-CO2-reactivity increased, increasing the risk of inducing ischaemia by hyperventilation.

The authors concluded that ptiO2-monitoring might become an important tool in our treatment regime for patients requiring haemodynamic monitoring.


Severe head injury cerebral perfusion pressure brain tissue oxygen pressure continuous monitoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams JE, Severinghaus JW (1962) Oxygen tension of human cerebral grey and white matter. The effect of forced hyperventilation. J Neurosurg 19: 959–963PubMedGoogle Scholar
  2. 2.
    Assad F, Schultheiss AR, Leniger-Follert E,et al (1984) Measurement of local oxygen partial pressure (pO2) of the brain cortex in cases of brain tumors. In: Piotrowski W, Brock M, Klinger M (eds) Advances in neurosurgery 12. Springer, Berlin Heidelberg New York, pp 263–270Google Scholar
  3. 3.
    Bicher HI (1973) Autoregulation of oxygen supply to brain tissue. In: Bicher HI, Bruley DF (eds) Oxygen transport to tissue. Plenum, New York, pp 215–222Google Scholar
  4. 4.
    Bouma GJ, Muizelaar JP, Choi SC,et al (1991) Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75: 685–693PubMedGoogle Scholar
  5. 5.
    Bouma GJ, Muizelaar JP, Stringer WA,et al (1992) Ultra-early evaluation of regional cerebral blood flow in severely headinjured patients using xenon-enhanced computerized tomography. J Neurosurg 77: 360–368PubMedGoogle Scholar
  6. 6.
    Brown MM, Wade JPH, Marshall J (1985) Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. Brain 108: 81–93PubMedGoogle Scholar
  7. 7.
    Bullock R (1993) Pathophysiological alterations in the central nervous system due to trauma. Schweiz Med Wschr 123 (11): 449–458PubMedGoogle Scholar
  8. 8.
    Carter PhL, Grahm Th, Bailes JE,et al (1991) Continuous postoperative monitoring of cortical blood flow and intracranial pressure. Surg Neurol 35: 36–39PubMedGoogle Scholar
  9. 9.
    Chesnut RM, Marshall LF, Klauber MR,et al (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34 (2): 216–222PubMedGoogle Scholar
  10. 10.
    Dearden NM, Midgley S (1993) Technical considerations in continuous jugular venous oxygen saturation measurements. Acta Neurochir (Wien) [Suppl] 59: 91–97Google Scholar
  11. 11.
    Dings J, Meixensberger J, Kuhnigk H,et al (1994) Tissue pO2 of normal and pathological human brain cortex. In: Bauer BL, Brock M, Klinger M (eds) Advances in neurosurgery 22. Springer, Berlin Heidelberg New York Tokyo, pp 190–197Google Scholar
  12. 12.
    Duling BR, Kuschinsky W, Wahl M (1979) Measurements of the perivascular pO2 in the vicinity of the pial vessels of the cat. Pflügers Arch 383: 29–34Google Scholar
  13. 13.
    Eintrei C, Lund N (1986) Effects of increases in the inspired oxygen fraction on brain surface oxygen pressure fields in pig and man. Acta Anaesthesiol Scand 30: 194–198PubMedGoogle Scholar
  14. 14.
    Enevoldsen EM, Jensen FT (1978) Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg 48: 689–703PubMedGoogle Scholar
  15. 15.
    Gomez CR, Backer RJ, Buchholz RD (1991) Transcranial Doppler ultrasound following closed head injury: vasospasm or vasoparalysis? Surg Neurol 35: 30–35PubMedGoogle Scholar
  16. 16.
    Goraj B, Rifkinson-Mann S, Leslie DR,et al (1993) Cerebral blood flow velocity after head injury: transcranial Doppler evaluation. Radiology 188: 137–141PubMedGoogle Scholar
  17. 17.
    Graham DI, Adams JH (1971) Ischemic brain damage in fatal head injuries. Lancet 6: 264–267Google Scholar
  18. 18.
    Grote J, Krüger-Biegner M, Schubert R,et al (1981) Significance of brain surface pO2 measurements in determining oxygen supply conditions in the brain cortex. Proc Int Conf Nijmegen 1980. Karger, Basel, pp 101–105Google Scholar
  19. 19.
    Grote J, Zimmer K, Schubert R (1985) Tissue oxygenation in normal and edematous brain cortex during arterial hypocapnia. Adv Exp Med Biol 100: 179–184Google Scholar
  20. 20.
    Hill DA, Abraham KJ, West RH (1993) Factors affecting outcome in the resuscitation of severely injured patients. Aust NZJ Surg 63: 606–609Google Scholar
  21. 21.
    Holzschuh M, Brawanski A, Meixensberger J,et al (1992) Transkranielle Dopplersonographie mit Prüfung der CO2-Reaktivität bei Schädel-Hirn-Trauma. Ultraschall Med 13: 208–212PubMedGoogle Scholar
  22. 22.
    Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet 3: 480–484Google Scholar
  23. 23.
    Kariman K, Hempel FG, Jöbsis FF (1983) In vivo comparison of cytochrome aa3 redox state and tissue pO2 in transient anoxia. J Appl Physiol 55: 1057–1063PubMedGoogle Scholar
  24. 24.
    Kontos HA, Wei EP (1985) Oxygen-dependent mechanisms in cerebral autoregulation. Ann Biomed Eng 13: 329–334PubMedGoogle Scholar
  25. 25.
    Kontos AH, Wei EP, Raper AJ,et al (1978) Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol 234: 582–591Google Scholar
  26. 26.
    Langfit Th, Obrist WD (1981) Cerebral blood flow and metabolism after intracranial trauma. Prog Neurol Surg 10: 14–18Google Scholar
  27. 27.
    Langfitt ThW, Obrist WD, Gennarelli ThA,et al (1977) Correlation of cerebral blood flow with outcome in head injured patients. Ann Surg 106: 411–414Google Scholar
  28. 28.
    Leninger-Follert E, Lübbers DW, Wrabetz W (1975) Regulation of local tissue pO2 of the brain cortex at different arterial O2 pressures. Pflügers Arch 359: 81–95Google Scholar
  29. 29.
    Lübbers DW (1977) Die Bedeutung des lokalen Gewebesauerstoffdruckes und des pO2-Histogrammes für die Beurteilung der Sauerstoffversorgung eines Organs. Prakt Anästh 12: 184–193Google Scholar
  30. 30.
    Lübbers DW (1967) Kritische Sauerstoffversorgung und Mikrozirkulation. In: Wendt CG (ed) Marburger Jahrbuch 1966/1967. Elwert, Marburg, pp 305–319Google Scholar
  31. 31.
    Marion DW, Darby J, Yonas H (1991) Acute cerebral blood flow changes caused by severe head injuries. J Neurosurg 74: 407–414PubMedGoogle Scholar
  32. 32.
    Markwalder Th-M, Grolimund P, Seiler R,et al (1984) Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure: a transcranial ultrasound Doppler study. J Cereb Blood Flow Metab 4: 368–372PubMedGoogle Scholar
  33. 33.
    Meixensberger J, Brawanski A, Holzschuh M,et al (1990) CBF dynamics during hyperventilation therapy for intracranial hypertension. In: Bock WJ, Lumenta Ch, Brock M,et al (eds) Advances in neurosurgery 19. Springer, Berlin Heidelberg New York Tokyo, pp 240–244Google Scholar
  34. 34.
    Mendelow AD, Teasdale GM, Russell Th,et al (1985) Effect of mannitol on cerebral blood flow and cerebral perfusion in human head injury. J Neurosurg 63: 43–48PubMedGoogle Scholar
  35. 35.
    Messeter K, Nordström C-H, Sundbärg G,et al (1986) Cerebral hemodynamics in patients with acute severe head trauma. J Neurosurg 64: 231–237PubMedGoogle Scholar
  36. 36.
    Metz Ch, Bein Th, Reng M,et al (1993) Die zerebrovenöse Oxymetrie bei Patienten mit Schädel-Hirn-Verletzungen. Anästh Intensivmed 34: 345–355Google Scholar
  37. 37.
    Metzger H, Heuber S (1977) Local oxygen tension and spike activity of the cerebral grey matter of the rat and its response to short intervals of O2 deficiency or CO2 excess. Pflügers Arch 370: 201–209Google Scholar
  38. 38.
    Miller JD, Sweet RMD, Narayan R,et al (1978) Early insults to the injured brain. JAMA 240, 5: 439–443PubMedGoogle Scholar
  39. 39.
    Nordström KH, Messeter K, Sundbärg G,et al (1988) Cerebral blood flow, vasoreactivity, and oxygen consumption during barbiturate therapy in severe traumatic brain lesions. J Neurosurg 68: 424–431PubMedGoogle Scholar
  40. 40.
    Obrist WD, Langfitt TW, Jaggi JL,et al (1984) Cerebral blood flow and metabolism in comatose patients with acute head injury. J Neurosurg 61: 241–253PubMedGoogle Scholar
  41. 41.
    Overgaard J, Tweed A (1974) Cerebral circulation after head injury. Part 1: cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg 41: 531–541PubMedGoogle Scholar
  42. 42.
    Robertson C (1993) Desaturation episodes after severe head injury: influence on outcome. Acta Neurochir (Wien) [Suppl] 59: 98–101Google Scholar
  43. 43.
    Rosner MJ, Coley IB (1986) Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg 65: 636–641PubMedGoogle Scholar
  44. 44.
    Rosner MJ, Daughton S (1990) Cerebral perfusion pressure management in head injury. J Trauma 30 (8): 933–941PubMedGoogle Scholar
  45. 45.
    Seyde WD, Longnecker DE (1986) Cerebral oxygen tension in rats during deliberate hypotension with sodium nitroprusside, 2-chloroadenosine, or deep isoflurane anesthesia. Anesthesiology 64: 480–485PubMedGoogle Scholar
  46. 46.
    Sheinberg M, Kanter MJ, Robertson C,et al (1992) Continuous monitoring of jugular venous oxygen saturation in head injured patients. J Neurosurg 76: 212–217PubMedGoogle Scholar
  47. 47.
    Shigemori M, Moriyama T, Harada K,et al (1990) Intracranial haemodynamics in diffuse and focal brain injuries. Evaluation with transcranial Doppler (TCD) ultrasound. Acta Neurochir (Wien) 107: 5–10Google Scholar
  48. 48.
    Smith RH, Guilbeau EJ, Reneau DD (1977) The oxygen tension fields within a discrete volume of cerebral cortex. Microvase Res 13: 233–240Google Scholar
  49. 49.
    Steiger H-J, Aaslid R, Stooss R,et al (1994) Transcranial Doppler monitoring in head injury: relations between type of injury, flow velocities, vasoreactivity, and outcome. Neurosurgery 34: 79–86PubMedGoogle Scholar
  50. 50.
    Stochetti N, Paparella A, Bridelli F,et al (1994) Cerebral venous oxygen saturation studied with bilateral samples in the internal jugular veins. Neurosurgery 34: 38–44PubMedGoogle Scholar
  51. 51.
    Tenney SM (1974) A theoretical analysis of the relationship between venous blood and mean tissue oxygen pressures. Respiration Physiology 20: 283–296PubMedGoogle Scholar
  52. 52.
    Thews G (1960) Die Sauerstoffdiffusion im Gehirn. Pflügers Arch 271: 197–226Google Scholar
  53. 53.
    Ward JD, Choi S, Marmarou A,et al (1989) Effect of prophylactic hyperventilation on outcome in patients with severe head injury. In: Hoff JT Betz AL (eds) Intracranial pressure VII. Springer, Berlin Heidelberg New York Tokyo, pp 630–633Google Scholar
  54. 54.
    Weber M, Grolimund P, Seiler RW (1990) Evaluation of posttraumatic cerebral blood flow velocities by transcranial Doppler ultrasonography. Neurosurgery 27: 106–112PubMedGoogle Scholar
  55. 55.
    Whalen WJ, Ganfield R, Nair P (1970) Effects of breathing O2 or O2 + CO2 and of the injection of neurohumors on the pO2 of cat cerebral cortex. Stroke 1: 194–199PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. Dings
    • 1
  • J. Meixensberger
    • 1
  • J. Amschler
    • 1
  • B. Hamelbeck
    • 1
  • K. Roosen
    • 1
  1. 1.Department of NeurosurgeryUniversity of WuerzburgGermany

Personalised recommendations