Mathematische Annalen

, Volume 246, Issue 2, pp 131–140 | Cite as

Maximal elements in the maximal ideal space of a measure algebra

  • Gavin Brown
  • William Moran


Maximal Element Ideal Space Maximal Ideal Space Measure Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, G.: Riesz products and generalized characters. Proc. London Math. Soc.30, 209–238 (1975)Google Scholar
  2. 2.
    Brown, G., Moran, W.: On the Silov boundary of a measure algebra. Bull. London Math. Soc.3, 197–203 (1971)Google Scholar
  3. 3.
    Brown, G., Moran, W.: Analytic discs in the maximal ideal space ofM(G). Pac. J. Math.75, 45–57 (1978)Google Scholar
  4. 4.
    Brown, G., Moran, W.: On orthogonality of Riesz products. Proc. Camb. Phil. Soc.76, 173–181 (1974)Google Scholar
  5. 5.
    Brown, G., Moran, W.: Bernoulli measure algebras. Acta Math.132, 77–109 (1974)Google Scholar
  6. 6.
    Dunkl, C.F., Ramirez, D.E.: Bounded projections on Fourier-Stieltjes transforms. Proc. Am. Math. Soc.31, 122–126 (1972)Google Scholar
  7. 7.
    Gamelin, T.W.: Uniform algebras. Englewood Cliffs, NJ: Prentice Hall 1969Google Scholar
  8. 8.
    Stout, E.L.: The theory of uniform algebras. Bogden and Quigley (1971)Google Scholar
  9. 9.
    Taylor, J.L.: The structure of convolution measure algebras. Trans. Amer. Math. Soc.119, 150–166 (1965)Google Scholar
  10. 10.
    Taylor, J.L.: Measure algebras. Regional Conf. Series in Math.16 (1973)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Gavin Brown
    • 1
    • 2
  • William Moran
    • 1
    • 2
  1. 1.School of MathematicsUniversity of New South WalesKensingtonAustralia
  2. 2.Pure Mathematics DepartmentUniversity of AdelaideAdelaideAustralia

Personalised recommendations