Mathematische Annalen

, Volume 246, Issue 2, pp 79–91 | Cite as

On the Chern forms of Kaehler hypersurfaces in complex space forms

  • Wilfried Katz


Complex Space Space Form Complex Space Form Chern Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chern, S.S.: Characteristic classes of Hermitian manifolds. Ann. Math.47, 85–121 (1946)Google Scholar
  2. 2.
    Greub, W.H., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology II. New York, London: Academic Press 1973Google Scholar
  3. 3.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry II. New York, London, Sydney: Interscience 1969Google Scholar
  4. 4.
    Nakagawa, H., Ogiue, K.: Complex space forms immersed in complex space forms. Trans. Am. Math. Soc.219, 289–297 (1976)Google Scholar
  5. 5.
    Nomizu, K., Smyth, B.: Differential geometry of complex hypersurfaces II. J. Math. Soc. Jpn.20, 498–521 (1968)Google Scholar
  6. 6.
    Ogiue, K.: Complex hypersurfaces of a complex projective space. J. Differential Geom.3, 253–256 (1969)Google Scholar
  7. 7.
    Ogiue, K.: Differential geometry of Kaehler submanifolds. Adv. Math.13, 73–114 (1974)Google Scholar
  8. 8.
    O'Neill, B.: Isotropic and Kaehler immersions. Can. J. Math.17, 907–915 (1965)Google Scholar
  9. 9.
    Smyth, B.: Differential geometry of complex hypersurfaces. Ann. of Math.85, 246–266 (1967)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Wilfried Katz
    • 1
  1. 1.Mathematisches Institut der Universität zu KölnKöln 41Germany

Personalised recommendations