Skip to main content
Log in

Mass-yield distribution in proton and heavy ion induced target fragmentation processes

  • Published:
Zeitschrift für Physik A Atoms and Nuclei

Abstract

It is shown that nuclear target fragmentation in proton and heavy ion induced reactions, in particular the following experimental facts concerning the mass-yield distribution can be understood in terms of a semiclassical model:(i) its independence on the mass of the projectile at approximately the same incident energies,(ii) its trend of approaching a limit at higher bombarding energies,(iii) its “U-formed” shape at sufficiently high bombarding energies. Standard methods in statistical theory of chemical equilibrium are used to calculate the mass-yield distribution for medium and heavy target nuclei in high-energy nuclear reactions where the Coulomb interaction between the fragments is taken into account selfconsistently. The result shows: The fact that the decaying rest target nucleus and its fragments are bounded objects of finite size and finite charge have significant influences, especially on the form of the mass-yield distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kaufman, S.B., Steinberg, E.P.: Phys. Rev. C22, 167 (1980)

    Google Scholar 

  2. Kaufman, S.B., Weisfield, M.W., Steinberg, E.P., Wilkins, B.D., Henderson, D.: Phys. Rev. C14, 1121 (1976)

    Google Scholar 

  3. Wolfgang, R., Baker, E.W., Caretto, A.A., Cumming, J.B., Friedlander, G., Hudis, J.: Phys. Rev.103, 394 (1956)

    Google Scholar 

  4. Grover, J.R.: Phys. Rev.126, 1540 (1962)

    Google Scholar 

  5. Rudy, C.R., Porile, N.T.: Phys. Lett.59 B, 240 (1975)

    Google Scholar 

  6. Cumming, J.B., Stoenner, R.W., Haustein, P.E.: Phys. Rev. C14, 1554 (1976)

    Google Scholar 

  7. Loveland, W., Otto, R.J., Morrissey, D.J., Seaborg, G.T.: Phys. Rev. Lett.39, 320 (1977)

    Google Scholar 

  8. Loveland, W., Otto, R.J., Morrissey, D.J., Seaborg, G.T.: Phys. Lett.69 B, 284 (1977)

    Google Scholar 

  9. Morrissey, D.J., Loveland, W., Seaborg, G.T.: Z. Phys. A — Atoms and Nuclei289, 123 (1978)

    Google Scholar 

  10. Friedlander, G.: In: Proceedings of the Symposium on the Physics and Chemistry of Fission, Salzburg, 1965, p. 265, IAEA, Vienna, Austria

    Google Scholar 

  11. Hudis, J., Kirsten, T., Stoenner, R.W., O.A. Schaeffer: Phys. Rev. C2, 2019 (1970)

    Google Scholar 

  12. Remsberg, L.P., Plasil, F., Cumming, J.B., Perlman, M.L.: Phys. Rev.187, 1597 (1969)

    Google Scholar 

  13. Wilkins, B.D., Kaufman, S.B., Steinberg, E.P., Urbon, J.A., Henderson, D.J.: Phys. Rev. Lett.43, 1080 (1979)

    Google Scholar 

  14. Wilkins, B.D., Steinberg, E.P., Kaufman, S.B.: Phys. Rev. C19 (1979)

  15. Cumming, J.B., Haustein, P.E., Stoenner, R.W., Mausner, L., Naumann, R.A.: Phys. Rev. C10, 739 (1974)

    Google Scholar 

  16. English, G., Porile, N.T., Steinberg, E.P.: Phys. Rev. C10, 2268 (1974)

    Google Scholar 

  17. Kaufman, S.B., Steinberg, E.P., Wilkins, B.D., Henderson, D.J.: Phys. Rev. C22, 1897 (1980)

    Google Scholar 

  18. Hudis, J., Dostrovsky, L., Friedlander, G., Grover, J.R., Porile, N.T., Remsberg, L.P., Stoenner, R.W., Tanaka, S.: Phys. Rev.129, 434 (1963)

    Google Scholar 

  19. English, G., Yu, Y.W., Porile, N.T.: Phys. Rev. C10, 2281 (1974)

    Google Scholar 

  20. Chang, S.K., Sugarman, N.: Phys. Rev. C9, 1138 (1974)

    Google Scholar 

  21. Kaufman, S.B., Steinberg, E.P., Weisfield, M.W.: Phys. Rev. C18, 1349 (1978)

    Google Scholar 

  22. Cumming, J.B., Haustein, P.E., Ruth, T.J., Virtes, G.J.: Phys. Rev. C17, 1632 (1978)

    Google Scholar 

  23. Meng Ta-chung: In: Proceedings of the Topical Meeting on Multiparticle Production on Nuclei at Very High Energies. Trieste, Italy 1976, Bellini, G., Bertocchi, L., Rancoita. P.G. (eds.) (ICTP, Trieste, 1976), p. 435; Phys. Rev. D15, 197 (1977)

    Google Scholar 

  24. In terms of the abrasion-ablation model of Bowman et al. (see e.g. Morrissey, D.J., March, W.R., Otto, R.J., Loveland, W., Seaborg, G.T.: Phys. Rev. C18, 1267 (1978)) the RT would be a “spectator” formed by a clean cut between the projectile and the target both of which areclassical (i.e. impenetrable) objects. The excitation energy of the “spectator” is due to itsexcess surface energy. Since in our picture the excitation of the RT is due to energy-momentum transfer to the RT while the projectile and the target may also be able to “go through” each other [23]. We do not use the word “spectator” in order to avoid confusion

    Google Scholar 

  25. Gross, D.H.E., Kalinowski, H.: Phys. Rep.45, 177 (1978)

    Google Scholar 

  26. Randrup, J., Koonin, S.E.: Nucl. Phys. A356, 223 (1981)

    Google Scholar 

  27. Hoyle, F.: Monthly Notices R. Astrom. Soc.106, 343 (1946)

    Google Scholar 

  28. Myers, W.D., Swiatecki, W.J.: Nucl. Phys.81, 1 (1966)

    Google Scholar 

  29. Busza, W.: In: High-Energy Physics and Nuclear Structure 1975 AIP conference proceedings 26, p. 211. Nagle, D.E., Borman, R.L., Storms, B.G., Goldhaber, A.F., Hargrave, C.K. (eds.): American Institute of Physics, N.Y. (1975)

    Google Scholar 

  30. A short report on this part of the paper has been given at the 4th Nordic Meeting on Intermediate and High Energy Nuclear Physics, Geilo, January 1981: Gross, D.H.E., Meng Tachung: Proceeding of the above-mentioned conference, p. 29

  31. Weiner, R., Weström, M.: Phys. Rev. Lett.34, 1523 (1975);

    Google Scholar 

  32. Beckmann, R., Raha, S., Stelte, N., Weiner, R.M.: Phys. Lett.105 B, 411 (1981)

    Google Scholar 

  33. Abdul-Magd. A., Hüfner, J.: Z. Phys. A227, 379 (1976)227, 379 (1976)

    Google Scholar 

  34. Campi, X., Hüfner, J.: Preprint (1981)

  35. Fai, G., Randrup, J.: Preprint, LBL-13357 (1981)

  36. Cumming, J.B.: Phys. Rev. Lett.44, 17 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by the Deutsche Forschungsgemeinschaft

We thank U. Brosa, T.T. Chou, J.B. Cumming, G. Friedlander, S. Grossmann, P. Heustein, S.B. Kaufman, N.T. Porile, E.P. Steinberg, D.B. Wilkins and C.N. Yang for helpful discussions and suggestions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, D.H.E., Satpathy, L., Ta-chung, M. et al. Mass-yield distribution in proton and heavy ion induced target fragmentation processes. Z Physik A 309, 41–48 (1982). https://doi.org/10.1007/BF01420149

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01420149

Keywords

Navigation