Skip to main content

Advertisement

Log in

The sequential change of local cerebral blood flow and local cerebral glucose metabolism after focal cerebral ischaemia and reperfusion in rat and the effect of MK-801 on local cerebral glucose metabolism

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

In order to investigate the time course change of local cerebral blood flow (1CBF) and local cerebral glucose metabolism (1CGM) and the effect of MK-801 (dizocilpine), an NMDA receptor antagonist on glucose metabolism in a middle cerebral artery occlusion-reperfusion model,14C-Iodo-antipyrine and14C-Deoxyglucose autoradiographic method have been used. The 1CBF was reduced to 0–10% of the control level in the ischaemic core and to 12–40% in the ischaemic penumbra between 60 and 120 min after the onset of the ischaemia. In the ischaemic core, the marked hyperfusion appeared at 15 min and maintained about 30 to 45 min following reperfusion. In the ischaemic penumbra, the hyperfusion during reperfusion was not found. Hypermetabolism occurred at 30 min and reached to the peak at 60 min after the middle cerebral artery (MCA) occlusion both in the ischaemic core and in the penumbra. The shift from hyper- to hypometabolism was observed during the ischaemia. The reperfusion following 2 hours of MCA occlusion facilitated the decrease of cerebral glucose metabolism in the ischaemic region. The pretreatment of MK-801 (0.4 mg/kg) inhibited both increased glucose metabolism during the ischaemia and decreased glucose metabolism during the reperfusion. The effect of limiting decreased glucose metabolism during the reperfusion by MK-801 was remarkable in the ischaemic penumbra. These findings support the hypothesis that excitation-induced hypermetabolism play a major role in the ischaemic insult following focal cerebral vascular occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andine P, Jacobson I, Hagberg H (1988) Calcium uptake evoked by electrical stimulation is enhanced postischaemically and precedes delayed neuronal death in CA1 of rat hippocampus: involvement of N-methyl-D-aspartate receptors. J Cereb Blood Flow Metab 8: 799–807

    PubMed  Google Scholar 

  2. Back T, Ginsberg MD, Dietrich WD, Watson BD (1996) Induction of spreading depression in the ischemic hemisphere following experimental middle cerebral artery occlusion: effect on infarct morphology. J Cereb Blood Flow Metab 16: 202–213

    PubMed  Google Scholar 

  3. Back T, Hoehn-Berlage M, Kohno K, Hossmann K-A (1994) Diffusion NMR imaging in experimental stroke: correlation with cerebral metabolites. Stroke 25: 494–500

    PubMed  Google Scholar 

  4. Back T, Zhao W, Ginsberg MD (1995) Three-dimensional image analysis of brain glucose metabolism-blood flow uncoupling and its electrophysiological correlates in the acute ischemic penumbra following middle cerebral artery occlusion. J Cereb Blood Flow Metab 15: 566–577

    PubMed  Google Scholar 

  5. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentration of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374

    PubMed  Google Scholar 

  6. Bolander HG, Persson L, Hillered E, d'Argy R, Poten U, Olsson Y (1989) Regional cerebral blood flow and histopathologic changes after middle cerebral artery occlusion in rats. Stroke 20: 930–937

    PubMed  Google Scholar 

  7. Chi OZ, Anwar M, Sinha AK, Weiss HR (1991) Effects of MK-801 on cerebral regional oxygen consumption in focal cerebral ischemia in rats. Circ Res 69: 414–420

    PubMed  Google Scholar 

  8. Dawson VE, Dawson TM, Bartley DA, Uhl GR, Snyder SH (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13: 2651–2661

    PubMed  Google Scholar 

  9. Drejer J, Benveniste H, Diemer NH, Schousboe A (1985) Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 45: 145–151

    PubMed  Google Scholar 

  10. Fieschi C, Sakurada O, Sokoloff E (1978) Eocal glucose utilization during resolution of embolic experimental ischemia. Adv Neurol 20: 223–229

    PubMed  Google Scholar 

  11. Gill R, Andine P, Hillered E, Persson E, Hagberg H (1992) The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischemia in the rat. J Cereb Blood Flow Metab 12: 371–379

    PubMed  Google Scholar 

  12. Gill R, Foster AC, Woodruff GN (1987) Systemic administration of MK-801 protects against ischaemic neuropathology in rats. Br J Pharmacol 91: 311

    Google Scholar 

  13. Ginsberg MD (1990) Local metabolic responses to cerebral ischemia. Cerebrovasc Brain Metab Rev 2: 58–93

    PubMed  Google Scholar 

  14. Ginsberg MD, Graham DI, Busto R (1985) Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology. Ann Neurol 18: 470–481

    PubMed  Google Scholar 

  15. Ginsberg MD, Smith DW, Wachtel MS, Gonzalez-Carvajal M, Busto R (1986) Simultaneous determination of local cerebral glucose utilization and blood flow by carbon-14 double-label autoradiography: method of procedure and validation studies in the rat. J Cereb Blood Flow Metab 6: 273–285

    PubMed  Google Scholar 

  16. Graham SH, Chen J, Sharp FR, Simon RP (1993) Limiting ischemic injury by inhibition of excitatory amino acid release. J Cereb Blood Flow Metab 13: 88–97

    PubMed  Google Scholar 

  17. Hagberg H, Lehmann A, Sandberg M, Nustrom B, Jacobson I, Hmberger A (1985) Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J Cereb Blood Flow Metab 5: 413–419

    PubMed  Google Scholar 

  18. Hakim AM, Hogan MJ, Carpenter S (1992) Time course of cerebral blood flow and histological outcome after focal cerebral ischemia in rats. Stroke 23: 1138–1144

    PubMed  Google Scholar 

  19. Hasegawa Y, Fisher M, Baron BM, Metealf G (1994) The competitive NMDA antagonist MDL-100,453 reduces infarct size after experimental stroke. Stroke 25: 1241–1246

    PubMed  Google Scholar 

  20. Hossmann K-A, Mies G, Paschen W, Csiba L, Bodsch W, Rapin JR, Le Poncin-Lafitte M, Takahashi K (1985) Multiparametric imaging of blood flow and metabolism after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 5: 97–107

    PubMed  Google Scholar 

  21. Iijima T, Mies G, Hossmann KA (1992) Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury. J Cereb Blood Flow Metab 12: 727–733

    PubMed  Google Scholar 

  22. Koizumi J, Yoshida Y, Nakazawa T, Ooneda G (1986) Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8: 1–8 (Jpn)

    Google Scholar 

  23. Koizumi Z, Yoshida Y, Nishigaya K, Kanai H, Ooneda G (1989) Experimental studies of ischemic brain edema. Effect of recirculation of the blood flow after ischemia on post ischemic brain edema. Jpn J Stroke 11: 11–17 (Jpn)

    Google Scholar 

  24. Lauritzen M, Hansen AJ (1992) The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab 12: 223–229

    PubMed  Google Scholar 

  25. Levy DE, Duffy TE (1977) Cerebral energy metabolism during transient ischemia and recovery in the gerbil. J Neurochem 28: 63–70

    PubMed  Google Scholar 

  26. MacDermott AB, Mayer ML, Westbrook GL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321: 519–522

    PubMed  Google Scholar 

  27. Mies G, Auer LM, Ebhardt G, Traupe H, Heiss W-D (1983) Flow and neuronal density in tissue surrounding chronic infarction. Stroke 14: 22–27

    PubMed  Google Scholar 

  28. Nakai H, Matsuda H, Takara E, Diksic M, Meyer E, Yamamoto YL (1987) Simultaneous in vivo measurement of lumped constant and rate constants in experimental cerebral ischemia using F-18 FDG. Stroke 18: 158–167

    PubMed  Google Scholar 

  29. Nedergaard M, Gjedde A, Diemer NH (1986) Focal ischemia of the rat brain: autoradiographic determination of cerebral glucose utilization, glucose content, and blood flow. J Cereb Blood Flow Metab 6: 607–615

    PubMed  Google Scholar 

  30. Nishigaya K, Yoshida Y, Sasuga M, Nukui H, Ooneda G (1991) Effect of recirculation on exacerbation of ischemic vascular lesions in rat brain. Stroke 22: 635–642

    Google Scholar 

  31. Nishikawa T, Kirsch JR, Kochler RC, Miyabe M, Traystman RJ (1994) Competitive N-Methyl-D-Aspartate receptor blockade reduces brain injury following transient focal ischemia in cats. Stroke 25: 2258–2263

    PubMed  Google Scholar 

  32. Palkovits M, Brownstein MJ (1988) Maps and guide to microdissection of the rat brain. In: Maps. Elsevier, New York, pp 81–142

    Google Scholar 

  33. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988) The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol 24: 543–551

    PubMed  Google Scholar 

  34. Pulainwlli WA, Levy DE, Duffy TE (1982) Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann Neurol 11: 499–509

    PubMed  Google Scholar 

  35. Reivich M (1974) Blood flow metabolism couple in brain. In: Brain dysfunction in metabolic disorders. Raven, New York, pp 125–140

    Google Scholar 

  36. Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19: 105–111

    Google Scholar 

  37. Rothman SM, Olney JW (1987) Excitotoxicity and the NMDA receptor. Trends Neurosci 10: 299–302

    Google Scholar 

  38. Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo-C-14-antipyrine. Am J Physiol 234: 59–66

    Google Scholar 

  39. Saturo K, Greenberg JH, Hickey WF, Reivich M (1989) Local cerebral glucose utilization in chronic middle cerebral artery occlusion in the cat. J Cereb Blood Flow Metab 9: 535–547

    PubMed  Google Scholar 

  40. Siesjö BK (1992) Pathophysiology and treatment of focal cerebral ischemia, I: Pathophysiology. J Neurosurg 77: 169–184

    PubMed  Google Scholar 

  41. Siesjö BK (1992) Pathophysiology and treatment of focal cerebral ischemia, II: mechanisms of damage and treatment. J Neurosurg 77: 337–354

    Google Scholar 

  42. Shiraishi K, Sharp F, Simon R (1989) Sequential metabolic changes in rat brain following middle cerebral artery occlusion: a 2-deoxyglucose study. J Cereb Blood Flow Metab 9: 765–773

    PubMed  Google Scholar 

  43. Silverstein FS, Buchanan K, Johnston MV (1986) Perinatal hypoxia-ischemia disrupts striatal high-affinity [3H] glutamate uptake into synaptosomes. J Neurochem 47: 1614–1619

    PubMed  Google Scholar 

  44. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The14C deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–917

    Google Scholar 

  45. Tanaka K, Greenberg JH, Gonatas NK, Reivich M (1985) Regional flow-metabolism couple following middle cerebral artery occlusion in cat. J Cereb Blood Flow Metab 5: 241–252

    PubMed  Google Scholar 

  46. Uematsu D, Greenberg JH, Araki N, Reivich M (1991) Mechanism underlying protective effect of MK-801 against NMDA-induced neuronal injury in vivo. J Cereb Blood Flow Metab 11: 779–785

    PubMed  Google Scholar 

  47. Welsh FA, Greenberg JH, Jones SC, Ginsberg MD, Reivich M (1980) Correlation between glucose utilization and metabolic levels during focal ischemia in cat brain. Stroke 11: 79–84

    PubMed  Google Scholar 

  48. Yang GY, Betz AL (1995) Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke 25: 1658–1665

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Mituska, S., Hashizume, K. et al. The sequential change of local cerebral blood flow and local cerebral glucose metabolism after focal cerebral ischaemia and reperfusion in rat and the effect of MK-801 on local cerebral glucose metabolism. Acta neurochir 139, 770–779 (1997). https://doi.org/10.1007/BF01420052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01420052

Keywords

Navigation