Skip to main content
Log in

An extension of RPA theory to strongly-interacting systems

  • Published:
Zeitschrift für Physik A Atoms and Nuclei

Abstract

Proceeding from a least-action principle, a generalization of the random-phase approximation is developed which is suited to the description of elementary excitations in such strongly-interacting Fermi systems as nuclei, nuclear matter, neutron-star matter and liquid3He. The equations of the theory involve matrix elements of the Hamiltonian and identity operators in a nonorthogonal basis of states incorporating short-range correlations. Linear response of the dynamically correlated system to a weak external perturbation is investigated within the same framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pines, D.: The many-body problem. New York: Benjamin 1961

    Google Scholar 

  2. Pines, D., Nozières, P.: The theory of quantum liquids. New York: Benjamin 1966

    Google Scholar 

  3. Brown, G.E.: Unified theory of nuclear models and forces. 2nd ed. Amsterdam: North-Holland 1971

    Google Scholar 

  4. Brown, G.E.: Many-body problems. Amsterdam: North-Holland 1972

    Google Scholar 

  5. Rowe, D.J.: Nuclear collective motion. London: Methuen 1970

    Google Scholar 

  6. Ring, P., Schuck, P.: The nuclear many-body problem. Berlin: Springer 1980

    Google Scholar 

  7. Clark, J.W., Westhaus, P.: Phys. Rev.141, 833 (1966)

    Google Scholar 

  8. Feenberg, E.: Theory of quantum fluids. New York: Academic Press 1969

    Google Scholar 

  9. Clark, J.W., Mead, L.R., Krotscheck, E., Kürten, K.E., Ristig, M.L.: Nucl. Phys. A328, 45 (1979)

    Google Scholar 

  10. Krotscheck, E., Smith, R.A., Clark, J.W.: Recent progress in many-body theories. Lecture Notes in Physics. Zabolitzky, J.G., de Llano, M., Fortes, M., Clark, J.W. (eds.). Vol. 142, p. 270. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  11. Clark, J.W.: The many-body problem, Jastrow correlations versus Brueckner theory. Lecture Notes in Physics. Guardiola, R., Ros, J. (eds.). Vol. 138, p. 184. Berlin: Springer 1981

    Google Scholar 

  12. Sandler, D.G., Kwong, N.-H., Clark, J.W., Krotscheck, E.: Recent progress in many-body theories. Lecture Notes in Physics. Zabolitzky, J.G., de Llano, M., Fortes, M., Clark, J.W. (eds.). Vol. 142, p. 228. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  13. Kerman, A.K., Koonin, S.E.: Ann. Phys.100, 332 (1976)

    Google Scholar 

  14. Koonin, S.E.: Progress in particle and nuclear physics. Wilkinson, D.H. (ed.). Vol. 4, p. 283. Oxford: Pergamon Press 1980

    Google Scholar 

  15. Lichtner, P.C., Griffin, J.J., Schultheis, H., Schultheis, R., Volkov, A.B.: University of Maryland technical report no. 79-010, 1978 (unpublished)

  16. Lichtner, P.C., Griffin, J.J., Schultheis, H., Schultheis, R., Volkov, A.B.: Phys. Rev. C20, 845 (1979)

    Google Scholar 

  17. Kramer. P., Saraceno, M.: Geometry of the time-dependent variational principle in quantum mechanics. Lecture Notes in Physics. Vol. 140. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  18. Clark, J.W.: Progress in particle and nuclear physics. Wilkinson, D.H. (ed.), Vol. 2, p. 89. Oxford: Pergamon Press 1979

    Google Scholar 

  19. Krotscheck, E., Clark, J.W.: Nucl. Phys. A328, 73 (1979)

    Google Scholar 

  20. Krotscheck, E., Ristig, M.L.: Nucl. Phys. A242, 389 (1975)

    Google Scholar 

  21. Krotscheck, E.: Phys. Lett.54 A, 123 (1975)

    Google Scholar 

  22. Fantoni, S., Rosati, S.: Nuovo Cim.25 A, 593 (1975)

    Google Scholar 

  23. Fantoni, S., Friman, B., Pandharipande, V.R.: (to be published)

  24. Pandharipande, V.R., Wiringa, R.B.: Rev. Mod. Phys.51, 831 (1979)

    Google Scholar 

  25. Wiringa, R.B., Pandharipande, V.R.: Nucl. Phys. A317, 1 (1979)

    Google Scholar 

  26. Clark, J.W., Westhaus, P.: J. Math. Phys.9, 131, 149 (1968)

    Google Scholar 

  27. Clark, J.W., Mead, L.R.: Phys. Lett.90 B, 331 (1980)

    Google Scholar 

  28. Guardiola, R.: Nucl. Phys. A328, 490 (1979)

    Google Scholar 

  29. Guardiola, R., Polls, A.: Nucl. Phys. A342, 385 (1980)

    Google Scholar 

  30. Guardiola, R.: Recent progress in many-body theories. Lecture Notes in Physics. Zabolitzky, J.G., de Llano, M., Fortes, M., Clark, J.W. (eds.). Vol. 142, p. 398. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  31. Guardiola, R., Faessler, A., Müther, H., Polls, A.: Nucl. Phys. A371, 79 (1981)

    Google Scholar 

  32. Morse, P.M., Feshbach, H.: Methods of theoretical physics. Part II. New York: McGraw-Hill 1953

    Google Scholar 

  33. Krotscheck, E., Kümmel, H., Zabolitzky, J.G.: Phys. Rev. A22, 1243 (1980)

    Google Scholar 

  34. Krotscheck, E., Clark, J.W.: The many-body problem, Jastrow correlations versus Brueckner theory. Lecture Notes in Physics. Guardiola, R., Ros, J. (eds.). Vol. 138, p. 356. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  35. Frenkel, J.: Wave mechanics, advanced general theory. Oxford: Clarendon 1934

    Google Scholar 

  36. Thouless, D.J.: The quantum mechanics of many-body systems, 2nd ed. New York: Academic Press 1972

    Google Scholar 

  37. Dirac, P.A.M.: Proc. Camb. Phil. Soc.26, 376 (1930)

    Google Scholar 

  38. Krotscheck, E., Smith, R.A., Jackson, A.D.: Phys. Rev. B24, 6404 (1981)

    Google Scholar 

  39. Blaizot, J.P.: Phys. Rep. C64, 171 (1980)

    Google Scholar 

  40. Sandler, D.G., Krotscheck, E., Clark, J.W.: (to be published)

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA

We thank O. Bohigas, J. Martorell, S.E. Koonin and E. Krotscheck for helpful comments. This research was supported in part by the U.S. National Science Foundation under Grant Nos. DMR 80-08229 at Washington University, Grant Nos. DMR 78-21068 and PHY 78-26582 at the University of Illinois and Grant No. PHY 79-23638 at Caltech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J.M.C., Clark, J.W. & Sandler, D.G. An extension of RPA theory to strongly-interacting systems. Z Physik A 305, 223–229 (1982). https://doi.org/10.1007/BF01417438

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01417438

Keywords

Navigation