Skip to main content
Log in

A laser microsurgical method of cell wall removal allows detection of largeconductance ion channels in the guard cell plasma membrane

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts ofVicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. “Laserassisted” patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAP:

cell-attached patch

E0 :

membrane potential

E k :

Nernst potential for K+

Ec :

true reversal potential of the channel in CAP

I k,out :

outwardly rectifying K+ channel

LJP:

liquid junction potential

Vm :

actual applied potential

Vp :

pipette potential

V op :

pipette potential at zero observed current

References

  • Armstrong F, Benkert R, Bentrup F-W, Obermeyer G (1998) Measuring ion channel activity during polar growth of pollen tubes. In: Cresti M, Cai G, Moscatelli A (eds) Fertilization in higher plants: molecular and cytological aspects. Springer, Berlin Heidelberg New York Tokyo, pp 271–281

    Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9: 345–375

    Article  PubMed  CAS  Google Scholar 

  • —, Simoncini L, Schroeder JI (1985) Blue light activates electrogenic ion pumping in guard cell protoplasts ofVicia faba. Nature 318: 285–287

    Article  CAS  Google Scholar 

  • Browse J, Somerville CR, Slack CR (1988) Changes in lipid composition during protoplast isolation. Plant Sci 56: 15–20

    Article  CAS  Google Scholar 

  • Bustamante JO, Hanover JA, Liepins A (1995) The ion channel behavior of the nuclear pore complex. J Membr Biol 146: 239–251

    PubMed  CAS  Google Scholar 

  • Chen Q, Boss WF (1990) Short-term treatment with cell wall degrading enzymes increases the activity of the inositol phospholipid kinases and the vanadate-sensitive ATPase of carrot cells. Plant Physiol 94: 1820–1829

    PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells ofVicia faba L. Planta 186: 143–153

    Article  PubMed  CAS  Google Scholar 

  • De Boer AH, Van Duijn B, Giesberg P, Wegner L, Obermeyer G, Köhler K, Linz KW (1994) Laser microsurgery: a versatile tool in plant (electro) physiology. Protoplasma 178: 1–10

    Article  Google Scholar 

  • Gill DR, Hyde SC, Higgins CF, Valverde MA, Mintenig GM, Sepulveda FV (1992) Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell 71: 23–32

    Article  PubMed  CAS  Google Scholar 

  • Grignon C, Sentenac H (1991) pH and ionic conditions in the apoplast. Annu Rev Plant Physiol Plant Mol Biol 42: 103–128

    Article  CAS  Google Scholar 

  • Hahne G, Lörz H (1988) Release of phytotoxic factors from plant cell walls during protoplast isolation. J Plant Physiol 132: 345–350

    CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85–100

    Article  PubMed  CAS  Google Scholar 

  • Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9: 2889–2892

    Google Scholar 

  • Henriksen GH, Assmann SM (1997) Laser-assisted patch clamping: a methodology. Pflugers Arch 433: 832–841

    Article  PubMed  CAS  Google Scholar 

  • —, Taylor AR, Brownlee C, Assmann SM (1996) Laser microsurgery of higher plant cell walls permits patch clamp access. Plant Physiol 110: 1063–1068

    PubMed  CAS  Google Scholar 

  • Hoffmann EK, Simonsen LO (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69: 315–385

    PubMed  CAS  Google Scholar 

  • Hosoi S, Iino M, Shimazaki K-I (1988) Outward-rectifying K+ channels in stomatal guard cell protoplasts. Plant Cell Physiol 29: 907–911

    CAS  Google Scholar 

  • Hwang J-U, Suh S, Yi H, Kim J, Lee Y (1997) Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells ofVicia faba L. Plant Physiol 115: 335–342

    PubMed  CAS  Google Scholar 

  • Ilan N, Moran N, Schwartz A (1994) External pH effects on the depolarization-activated K channels in guard cell protoplasts ofVicia faba. J Gen Physiol 103: 807–831

    Article  PubMed  CAS  Google Scholar 

  • Keller BU, Hedrich R, Raschke K (1989) Voltage-dependent anion channels in the plasma membrane of guard cells. Nature 341: 450–453

    Article  Google Scholar 

  • Kim M, Hepler PK, Eun S-O, Ha KS, Lee Y (1995) Actin filaments in mature guard cells are radially distributed and involved in stomatal movement. Plant Physiol 109: 1077–1084

    PubMed  CAS  Google Scholar 

  • Klughammer B, Benz R, Betz M, Thume M, Dietz K-J (1992) Reconstitution of vacuolar ion channels into planar lipid bilayers. Biochim Biophys Acta 1104: 308–316

    Article  PubMed  CAS  Google Scholar 

  • Kruse T, Tallman G, Zeiger E (1989) Isolation of guard cell protoplasts from mechanically prepared epidermis ofVicia faba leaves. Plant Physiol 90: 1382–1386

    PubMed  Google Scholar 

  • Kurkdjian A, Leitz G, Manigault P, Harim A, Greulich KO (1993) Non-enzymatic access to the plasma membrane ofMedicago root hairs by laser microsurgery. J Cell Sci 105: 263–268

    Google Scholar 

  • Lee HJ, Tucker EB, Crain RC, Lee Y (1993) Stomatal opening is induced in epidermal peels ofCommelina communis L. by GTP analogs or pertussis toxin. Plant Physiol 102: 95–100

    PubMed  CAS  Google Scholar 

  • Lee Y, Assmann SM (1991) Diacylglycerols induce both ion pumping in patch-clamped guard cell protoplasts and opening of intact stomata. Proc Natl Acad Sci USA 88: 2127–2131

    Article  PubMed  CAS  Google Scholar 

  • Leitz B, Weber G, Seeger S, Greulich KO (1994) The laser microbeam trap as an optical tool for living cells. Physiol Chem Phys Med NMR 26: 69–88

    PubMed  CAS  Google Scholar 

  • Linder B, Raschke K (1992) A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing. FEBS Lett 313: 27–30

    Article  PubMed  CAS  Google Scholar 

  • MacRobbie, EAC (1988) Control of ion fluxes in stomatal guard cells. Bot Acta 101: 55–75

    Google Scholar 

  • Miedema H, Assmann SM (1996) A membrane-delimited effect of internal pH on the K+ outward rectifier ofVicia faba guard cells. J Membr Biol 154: 227–237

    Article  PubMed  CAS  Google Scholar 

  • — — (1998) The calculation of intracellular ion concentrations and membrane potentials from cell-attached and excised patch measurements: cytosolic K+ concentration and membrane potential inVicia faba guard cells. J Membr Biol 166: 101–110

    Article  PubMed  CAS  Google Scholar 

  • Moran N, Ehrenstein G, Iwasa K, Bare C, Mischke C (1984) Ion channels in plasmalemma of wheat protoplasts. Science 226: 835–838

    Article  PubMed  CAS  Google Scholar 

  • Morris P, Linstead P, Thain JF (1981) Comparative studies of leaf tissue and isolated protoplasts III: effects of wall degrading enzymes and osmotic stress. J Exp Bot 32: 801–811

    Article  CAS  Google Scholar 

  • Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. In: Rudy B, Iverson L (eds) Methods in enzymology, vol 207. Academic Press, San Diego, pp 123–131

    Google Scholar 

  • Roelfsema MRG, Prins HBA (1997) Ion channels in guard cells ofArabidopsis thaliana (L.) Heynh. Planta 202: 18–27

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C, Schroeder JI (1994) Anion selectivity of slow anion channels in the plasma membrane of guard cells: large nitrate permeability. Plant Physiol 106: 383–391

    PubMed  CAS  Google Scholar 

  • Schroeder JI (1995) Anion channels as central mechanisms for signal transduction in guard cells and putative functions in roots for plant-soil interactions. Plant Mol Biol 28: 353–361

    Article  PubMed  CAS  Google Scholar 

  • —, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane ofVicia faba guard cells. Nature 338: 427–430

    Article  Google Scholar 

  • —, Keller BU (1992) Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci USA 89: 5025–5029

    Article  PubMed  CAS  Google Scholar 

  • —, Hedrich R, Fernandez JM (1984) Potassium selective single channels in guard cell protoplasts ofVicia faba. Nature 312: 361–362

    Article  CAS  Google Scholar 

  • —, Raschke K, Neher E (1987) Voltage dependence of K+ channels in guard-cell protoplasts. Proc Natl Acad Sci USA 84: 4108–4112

    Article  PubMed  CAS  Google Scholar 

  • Schulz-Lessdorf B, Hedrich R (1995) Protons and calcium modulate SV-type channels in the vacuolar-lysosomal compartment: channel interaction with calmodulin inhibitors. Planta 197: 655–671

    Article  CAS  Google Scholar 

  • Schwartz A, Zeiger E (1984) Metabolic energy for stomatal opening: roles of photophosphorylation and oxidative phosphorylation. Planta 161: 129–136

    Article  CAS  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Taylor AR, Brownlee C (1992) Localized patch clamping of plasma membrane of a polarized plant cell: laser microsurgery of theFucus spiralis rhizoid cell wall. Plant Physiol 99: 1686–1688

    Article  PubMed  CAS  Google Scholar 

  • Thiel G, MacRobbie EAC, Blatt MR (1992) Membrane transport in stomatal guard cells: the importance of voltage control. J Membr Biol 126: 1–18

    PubMed  CAS  Google Scholar 

  • Vogelzang SA, Prins HBA (1994) Patch-clamp analysis of the dominant plasma membrane K+ channel in root cell protoplasts ofPlantago media L.: its significance for the P and K-state. J Membr Biol 141: 113–122

    PubMed  CAS  Google Scholar 

  • Ward JM, Pei Z-M, Schroeder JI (1995) Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7: 833–844

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Tester MA (1992) Potassium channels from the plasma membrane of rye roots characterized following incorporation into planar lipid bilayers. Planta 186: 188–202

    Article  CAS  Google Scholar 

  • Wu W-H, Assmann SM (1994) A membrane-delimited pathway of G-protein regulation of the guard-cell inward K+ channel. Proc Natl Acad Sci USA 91: 6310–6314

    Article  PubMed  CAS  Google Scholar 

  • — — (1995) Is ATP required for K+ channel activation inVicia guard cells? Plant Physiol 107: 101–109

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miedema, H., Henriksen, G.H. & Assmann, S.M. A laser microsurgical method of cell wall removal allows detection of largeconductance ion channels in the guard cell plasma membrane. Protoplasma 209, 58–67 (1999). https://doi.org/10.1007/BF01415701

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01415701

Keywords

Navigation