Skip to main content
Log in

Immunolocalization of two ligninO-methyltransferases in stems of alfalfa (Medicago sativa L.)

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) catalyze parallel reactions that are believed to be involved in the biosynthesis of lignin monomers. Antisera specific for alfalfa (Medicago sativa L.) COMT or CCOMT were raised against the enzymes expressed inEscherichia coli, and were used for immunolocalization studies in lignifying alfalfa stem tissue. Both COMT and CCOMT were localized to xylem parenchyma cells, as assessed by light microscopy and immunocytochemistry. Electron microscopy revealed that both enzymes were located in the cytoplasm of xylem parenchyma cells, and to a lesser extent, in the cytoplasm of phloem cells. There was no significant difference in the localization pattern of COMT and CCOMT, suggesting that the two enzymes may be part of a metabolic grid leading to production of lignin monomers in lignifying tissue of mature alfalfa stem internodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

BSE:

backscattered electron

CCOMT:

caffeoyl CoA 3-O-methyltransferase

COMT:

caffeic acid 3-O-methyltransferase

EM:

electron microscope

OMT:

O-methyltransferase

PAGE:

polyacrylamide gel electrophoresis

PBS:

phosphate-buffered saline

PBST:

phosphate-buffered saline containing Tween 20

SDS:

sodium dodecyl sulfate

SE:

secondary electron

SEM:

scanning electron microscope

TBST:

Tris-buffered saline containing Tween 20

TEM:

transmission electron microscope

References

  • Albrecht KA, Wedin WF, Buxton DR (1987) Cell-wall composition and digestibility of alfalfa stems and leaves. Crop Sci 27: 735–741

    Article  CAS  Google Scholar 

  • Albrecht RM, Prudent JR, Simmons SR, Pawley JB, Choate JJ (1989) Observations of colloidal gold labeled platelet microtubules: high voltage electron microscopy and low voltage scanning electron microscopy. Scan Microsc 3: 273–278

    CAS  Google Scholar 

  • Becker RP, Sogard M (1979) Visualization of subsurface structures in cells and tissues by backscattered electron imaging. Scanning Electron Microsc 2: 835–870

    Google Scholar 

  • Beesley JE (1989) Microbiological immunocytochemistry: a review of current trends and applications. Scan Microsc 3: 279–286

    CAS  Google Scholar 

  • Boudet AM, Grima-Pettenati J (1996) Lignin genetic engineering. Mol Breed 2: 25–39

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Buxton DR, Russell JR (1988) Lignin constituents and cell-wall digestibility of grass and legume stems. Crop Sci 28: 553–558

    Article  CAS  Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition: mechanisms of control and implications for the genetic improvement of plants. Plant Physiol 110: 3–13

    PubMed  CAS  Google Scholar 

  • Chappie CCS, Vogt T, Ellis BE, Somerville CR (1992) An arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4: 1413–1424

    Article  Google Scholar 

  • Chen Y, Centoze VE, Verhovsky A, Borisy GG (1995) Imaging of cytoskeletal elements by low-temperature high-resolution scanning electron microscopy. J Microsc 179: 67–76

    PubMed  CAS  Google Scholar 

  • DeHarven E, Leung R, Christensen H (1984) A novel approach for scanning electron microscopy of colloidal gold-labeled cell surfaces. J Cell Biol 99: 53–57

    Article  CAS  Google Scholar 

  • Edwards R, Dixon RA (1991) Purification and characterization of S-adenosyl-L-methionine: caffeic acid 3-O-methyltransferase from suspension cultures of alfalfa (Medicago sativa L.). Arch Biochem Biophys 287: 372–379

    Article  PubMed  CAS  Google Scholar 

  • Engels FM, Jung HG (1998) Alfalfa stem tissues: cell-wall development and lignification. Ann Bot 82: 561–568

    Article  Google Scholar 

  • Goode D, Maugel TK (1987) Backscattered electron imaging of immuno-gold-labeled and silver enhanced microtubules in cultured mammalian cells. J Electron Microsc Techn 5: 263–275

    Article  Google Scholar 

  • Gowri G, Bugos RC, Campbell WH, Maxwell CA, Dixon RA (1991) Stress responses in alfalfa (Medicago sativa L.) X: molecular cloning and expression of S-adenosyl-L-methionine: caffeic acid 3-O-methyltransferase, a key enzyme of lignin biosynthesis. Plant Physiol 97: 7–14

    Article  PubMed  CAS  Google Scholar 

  • Heinzmann U, Höfler H (1994) Detection of epidermal growth factor receptor by scanning electron microscopy. Histochemistry 101: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Hermann R, Walther P, Müller M (1986) Immunogold labeling in scanning electron microscopy. Histochem Cell Biol 106: 31–39

    Article  Google Scholar 

  • Hodges GM (1992) On the molecular profiling of cell surfaces by SEM. Arch Histol Cytol 55 Suppl: 27–38

    Article  PubMed  Google Scholar 

  • — Southgate T, Toulson EC (1987) Colloidal gold: a powerful tool in scanning electron microscopy immunocytochemistry; an overview of bioapplications. Scan Microsc 1: 301–318

    CAS  Google Scholar 

  • Horisberger M (1981) Colloidal gold: a cytochemical marker for light and fluorescent microscopy and for transmission and scanning electron microscopy. Scan Electron Microsc 2: 9–31

    Google Scholar 

  • — (1989) Colloidal gold for scanning electron microscopy. In: Hayat MA (ed) Colloidal gold: principles, methods, and applications, vol 1. Academic Press, San Diego, pp 217–249

    Google Scholar 

  • — Rosset J, Bauer H (1976) Localization of mannan at the surface of yeast protoplasts by scanning electron microscopy. Arch Microbiol 109: 9–14

    Article  PubMed  CAS  Google Scholar 

  • Hrazdina G, Jensen RA (1992) Spatial organization of enzymes in plant metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 43: 241–267

    Article  CAS  Google Scholar 

  • —, Wagner GJ (1985) Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch Biochem Biophys 237: 88–100

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Sewalt VJH, Ballance GM, Ni W, Stürzer C, Dixon RA (1998) Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in relation to lignification. Plant Physiol 117: 761–770

    Article  PubMed  CAS  Google Scholar 

  • Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Mol Biol 37: 663–674

    Article  PubMed  CAS  Google Scholar 

  • Lam TBT, Iiyama K, Stone BA (1996) Caffeic acid:O-methyltransferases and the biosynthesis of ferulic acid in primary cell walls of wheat seedlings. Phytochemistry 41: 1507–1510

    Article  CAS  Google Scholar 

  • Li L, Popko JL, Zhang X-H, Osakabe K, Tsai C-J, Joshi CP, Chiang VL (1997) A novel multifunctionalO-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine. Proc Natl Acad Sci USA 94: 5461–5466

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Walther P, Hermann R, Schwarb P (1989) SEM immunocytochemistry with small (5 to 15 nm) colloidal gold markers. In: Verkleij AJ, Leunissen JLM (eds) Immunogold labeling in cell biology. CRC Press, Boca Raton, pp 199–216

    Google Scholar 

  • Namork E (1991) Double labeling of antigenic sites on cell surfaces imaged with backscattered electrons. In: Hayat MA (ed) Colloidal gold: principles, methods, and applications, vol 1. Academic Press, San Diego, pp 188–205

    Google Scholar 

  • Pakusch AE, Kneusel RE, Matern U (1989)S-adenosyl-L-methionine: trancs-caffeoyl-coenzyme A 3-O-methyltransferase from elicitor-treated parsley cell suspension cultures. Arch Biochem Biophys 271: 488–494

    Article  PubMed  CAS  Google Scholar 

  • Peters K-R (1986) Metal deposition by high-energy sputtering for high magnification electron microscopy. In: Koehler JK (ed) Advanced techniques in biological electron microscopy, vol 3. Springer, Berlin Heidelberg New York Tokyo, pp 101–166

    Google Scholar 

  • Roth J (1996) The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry. Histochem Cell Biol 106: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Shorrosh BS, Subramaniam J, Schubert KR, Dixon RA (1993) Expression and localization of plant protein disulfide isomerase. Plant Physiol 103: 719–726

    PubMed  CAS  Google Scholar 

  • Sieber-Blum M, Sieber F, Yamada KM (1981) Cellular fibronectin promotes adrenergic differentiation of quail neural crest cells in vitro. Exp Cell Res 133: 285–295

    Article  PubMed  CAS  Google Scholar 

  • Srere PA (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56: 89–124

    Article  PubMed  CAS  Google Scholar 

  • Stierhof YD, Schwarz H, Frank H (1987) Transverse sectioning of plastic embedded immunolabeled cryosections: morphology and permeability to protein A-colloidal gold complexes. J Ultrastruct Mol Struct Res 97: 187–199

    Article  Google Scholar 

  • —, Humbel BM, Hermann R, Otten MT, Schwarz H (1992) Direct visualization and silver enhancement of ultra-small antibody-bound gold particles on immunolabeled ultrathin resin sections. Scan Microsc 6: 1009–1022

    CAS  Google Scholar 

  • Tokuyasu (1984) Immunocryoultramicrotomy. In: Polak JM, Varndell M (eds) Immunolabeling in electron microscropy. Elsevier, Amsterdam, pp 71–82

    Google Scholar 

  • Trejdosiewicz LK, Smolira MA, Hodges GM, Goodman SL, Livingston DC (1981) Cell surface distribution of flbronectin in cultures of fibroblasts and bladder derived epithelium: SEM-immunogold localization compared to immunoperoxidase and immunofluorescence. J Microsc 123: 227–236

    PubMed  CAS  Google Scholar 

  • Walther P, Müller M (1986) Detection of small (5–15 nm) gold-labeled surface antigens using backscattered electrons. In: The science of biological specimen preparation. Scanning Electron Microscopy Inc., Chicago, pp 195–201

    Google Scholar 

  • —, Ariano BH, Kriz SR, Müller M (1983) High resolution SEM detection of protein-A gold (15 nm) marked surface antigens using backscattered electrons. Beitr Elektronmikroskop Direktabb Oberfl 16: 539–545

    Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7: 1001–1013

    Article  PubMed  CAS  Google Scholar 

  • Ye Z-H (1997) Association of caffeoyl CoA 3-O-methyltransferase expression with lignifying tissues in several dicot plants. Plant Physiol 115: 1341–1350

    Article  PubMed  CAS  Google Scholar 

  • — Varner JE (1995) Differential expression of twoO-methyltransferases in lignin biosynthesis inZinnia elegans. Plant Physiol 108: 459–467

    Article  PubMed  CAS  Google Scholar 

  • — Kneusel RE, Matern U, Varner JE (1994) An alternative methylation pathway in lignin biosynthesis inZinnia. Plant Cell 6: 1427–1439

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Morrison WHI, Negrel J, Ye Z-H (1998) Dual methylation pathways in lignin biosynthesis. Plant Cell 10: 2033–2045

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Dixon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kersey, R., Inoue, K., Schubert, K.R. et al. Immunolocalization of two ligninO-methyltransferases in stems of alfalfa (Medicago sativa L.). Protoplasma 209, 46–57 (1999). https://doi.org/10.1007/BF01415700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01415700

Keywords

Navigation