Skip to main content
Log in

Tethering molecules in membrane traffic

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Membrane transport in eukaryotic cells proceeds through a variety of organelles. Specificity of a given fusion event between two membranes can be regulated at different levels of docking and fusion. This review summarises recent progress that has been made in understanding the molecular links between the core fusion machinery and upstream regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalto MK, Ronne H, Keranen S (1993) Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO J 12: 4095–4104

    PubMed  CAS  Google Scholar 

  • Barlowe C (1997) Coupled ER to Golgi transport reconstituted with purified proteins. J Cell Biol 139: 1097–1108

    Article  PubMed  CAS  Google Scholar 

  • Barr FA, Puype M, Vandekerckhove J, Warren G (1997) GRASP65, a protein involved in the stacking of Golgi cisternae. Cell 91: 253–262

    Article  PubMed  CAS  Google Scholar 

  • Barroso M, Sztul ES (1994) Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome. J Cell Biol 124: 83–100

    Article  PubMed  CAS  Google Scholar 

  • Becherer KA, Rieder SE, Emr SD, Jones EW (1996) A novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. Mol Biol Cell 7: 579–594

    PubMed  CAS  Google Scholar 

  • Bennett MK (1995) SNAREs and the specificity of transport vesicle targeting. Curr Opin Cell Biol 7: 581–586

    Article  PubMed  CAS  Google Scholar 

  • Block MR, Glick BS, Wilcox CA, Wieland FT, Rothman JE (1988) Purification of a N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc Natl Acad Sci USA 85: 7852–7856

    Article  PubMed  CAS  Google Scholar 

  • Bowser R, Müller H, Govindan B, Novick P (1992) Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis. J Cell Biol 118: 1041–1056

    Article  PubMed  CAS  Google Scholar 

  • Brennwald P, Kearns B, Champion K, Keränen S, Bankaitis V, Novick P (1994) Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79: 245–258

    Article  PubMed  CAS  Google Scholar 

  • Burd CG, Peterson M, Cowles CR, Emr SD (1997) A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast. Mol Biol Cell 8: 1089–1104

    PubMed  CAS  Google Scholar 

  • Butz S, Okamoto M, Südhof TC (1998) A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94: 773–782

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Ballew N, Barlowe C (1998) Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J 17: 2156–2165

    Article  PubMed  CAS  Google Scholar 

  • Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62: 317–329

    Article  PubMed  CAS  Google Scholar 

  • Christoforidis S, McBride HM, Burgoyne RD, Zerial M (1999) The Rab5 effector EEA1 is a core component of endosome docking. Nature 397: 621–625

    Article  PubMed  CAS  Google Scholar 

  • Clary DO, Griff IC, Rothman JE (1990) SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61: 709–721

    Article  PubMed  CAS  Google Scholar 

  • Conradt B, Haas A, Wickner W (1994) Determination of four biochemically distinct, sequential stages during vacuole inheritance in vitro J Cell Biol 126: 99–110

    Article  PubMed  CAS  Google Scholar 

  • Denker BM, Nigam SK (1998) Molecular structure and assembly of the tight junction. Am J Physiol 274: F1–9

    PubMed  CAS  Google Scholar 

  • Drubin DG, Nelson WJ (1996) Origins of cell polarity. Cell 84: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Field C, Schekman R (1980) Localized secretion of acid phosphatase reflects the pattern of cell surface growth inSaccharomyces cerevisiae. J Cell Biol 86: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Finger FP, Novick P (1997) Sec3p is involved in secretion and morphogenesis inSaccharomyces cerevisiae. Mol Biol Cell 8: 647–662

    PubMed  CAS  Google Scholar 

  • —, Hughes TE, Novick P (1998) Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92: 559–571

    Article  PubMed  CAS  Google Scholar 

  • Fischer von Mollard G, Nothwehr S, Stevens T (1997) The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. J Cell Biol 137: 1511–1524

    Article  Google Scholar 

  • Gaullier J-M. Simonsen A, D'Arrigo A, Bremnes B, Stenmark H, Aasland R (1998) FYVE fingers bind PtdIns(3)P. Nature 394: 432–433

    Article  PubMed  CAS  Google Scholar 

  • Gerst JE, Rodgers L, Riggs M, Wigler M (1992) SNC1, a yeast homologue of the synaptic-vesicle-associated membrane protein/synaptobrevin gene family: genetic interactions with the RAS and CAP genes. Proc Natl Acad Sci USA 89: 4338–4342

    Article  PubMed  CAS  Google Scholar 

  • Grindstaff KK, Yeaman C, Anandasabapathy N, Hsu S-C, Rodriguez-Boulan E, Scheller RH, Nelson WJ (1998) Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93: 731–740

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Roth D, Walch-Solimena C, Novick P (1999) The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18: 1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Haarer BK, Corbett A, Kweon Y, Petzold AS, Silver P, Brown SS (1996) SEC3 mutations are synthetically lethal with profilin mutations and cause defects in diploid-specific bud-site selection. Genetics 144: 495–510

    PubMed  CAS  Google Scholar 

  • Haas A, Wickner W (1996) Homotypic vacuole fusion requires Sec17p (yeast α-SNAP) and Sec18p (yeast NSF). EMBO J 15: 3296–3305

    PubMed  CAS  Google Scholar 

  • —, Scheglmann D, Lazar T, Gallwitz D, Wickner W (1995) The GTPase Ypt7p is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. EMBO J 14: 5258–5270

    PubMed  CAS  Google Scholar 

  • Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR (1998) ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 141: 199–208

    Article  PubMed  CAS  Google Scholar 

  • Horazdovsky BF, Busch GR, Emr SD (1994)VPS21 encodes a rab5-like GTP binding protein that is required for the sorting of yeast vacuolar proteins. EMBO J 13: 1297–1309

    PubMed  CAS  Google Scholar 

  • Horiuchi H, Lippé R, McBride HM, Rubino M, Woodman P, Stenmark H, Rybin V, Wilm M, Ashman K, Mann M, Zerial M (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90: 1149–1159

    Article  PubMed  CAS  Google Scholar 

  • Hsu S-C, Ting AE, Hazuka CD, Davanger S, Kenny JW, Kee Y, Scheller RH (1996) The mammalian brain rsec6/8 complex. Neuron 17: 1209–1219

    Article  PubMed  CAS  Google Scholar 

  • Jones AT, Clague M (1995) Phosphatidylinositol 3-kinase activity is required for early endosome fusion. Biochem J 311: 31–34

    PubMed  CAS  Google Scholar 

  • —, Mills IG, Scheidig AJ, Alexandrov K, Clague MJ (1998) Inhibition of endosome fusion by wortmannin persists in the presence of activated rab5. Mol Biol Cell 9: 323–332

    PubMed  CAS  Google Scholar 

  • Levine TP, Rabouille C, Kieckbusch RH, Warren G (1996) Binding of the vesicle docking protein p115 to Golgi membranes is inhibited under mitotic conditions. J Biol Chem 271: 17304–17311

    Article  PubMed  CAS  Google Scholar 

  • Li G, D'Souza-Schorey C, Barbieri MA, Roberts RL, Klippel A, Williams LT, Stahl PD (1995) Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5. Proc Natl Acad Sci USA 92: 10207–10211

    Article  PubMed  CAS  Google Scholar 

  • Lian JP, Stone S, Jiang Y, Lyons P, Ferro-Novick S (1994) Ypt1p implicated in v-SNARE activation. Nature 372: 698–701

    Article  PubMed  CAS  Google Scholar 

  • Linstedt AD, Hauri HP (1993) Giantin, a novel conserved Golgi membrane-protein containing a cytoplasmic domain of at least 350-kda. Mol Biol Cell 4: 679–693

    PubMed  CAS  Google Scholar 

  • Lowe M, Rabouille C, Nakamura N, Watson R, Jackman M, Jämsä E, Rahman D, Pappin DJC, Warren G (1998) Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell 94: 783–793

    Article  PubMed  CAS  Google Scholar 

  • Lupashin VV, Waters MG (1996) In-vivo and in-vitro analysis of ER to Golgi SNARE complex assembly in yeast. Mol Biol Cell 7: 421–421

    Google Scholar 

  • — — (1997) t-SNARE activation through transient interaction with a rab-like guanosine triphosphatase. Science 276: 1255–1258

    Article  PubMed  CAS  Google Scholar 

  • Mayer A, Wickner W (1997) Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J Cell Biol 136: 307–317

    Article  PubMed  CAS  Google Scholar 

  • — — Haas A (1996) Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85: 83–94

    Article  PubMed  CAS  Google Scholar 

  • McBride HM, Rybin V, Murphy C, Giner A, Teasdale R, Zerial M (1999) Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98: 377–386

    Article  PubMed  CAS  Google Scholar 

  • Mills IG, Jones AT, Clague MJ (1998) Involvement of the endosomal autoantigen EEA1 in homotypic fusion of early endosomes. Curr Biol 8: 881–884

    Article  PubMed  CAS  Google Scholar 

  • Misteli T, Warren G (1994) COP-coated vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell-free system. J Cell Biol 125: 269–282

    Article  PubMed  CAS  Google Scholar 

  • Mu FT, Callighan JM, Steele-Mortimer O, Stenmark H, Parton RG, Campbell PL, McCluskey J, Yeo JP, Tock EPC, Toh B-H (1995) EEA1, an early endosome-associated protein. J Biol Chem 270: 13503–13511

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131: 1715–1726

    Article  PubMed  CAS  Google Scholar 

  • —, Lowe M, Levine TP, Rabouille C, Warren G (1997) The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89: 445–455

    Article  PubMed  CAS  Google Scholar 

  • Nelson DS, Alvarez C, Gao Y-S, Garcia-Mata R, Fialkowski E, Sztul E (1998) The membrane transport factor TPA/p115 cycles between the Golgi and earlier secretory compartments and contains distinct domains required for its localization and function. J Cell Biol 143: 319–331

    Article  PubMed  CAS  Google Scholar 

  • Nichols BJ, Ungermann C, Pelham HRB, Wickner WT, Haas A (1997) Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387: 199–202

    Article  PubMed  CAS  Google Scholar 

  • Novick P, Zerial M (1997) The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol 9: 496–504

    Article  PubMed  CAS  Google Scholar 

  • — Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21: 205–215

    Article  PubMed  CAS  Google Scholar 

  • — Ferro S, Schekman R (1981) Order of events in the yeast secretory pathway. Cell 25: 461–469

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Perrelet A, Rothman JE (1998) Vesicles in strings: morphological evidence for processive transport within the Golgi stack. Proc Natl Acad Sci USA 95: 2279–2283

    Article  PubMed  CAS  Google Scholar 

  • Patki V, Lawe DC, Corvera S, Virbasius JV, Chawla A (1998) A functional PtdIns(3)P-binding motif. Nature 394: 433–434

    Article  PubMed  CAS  Google Scholar 

  • Patki V, Virbasius J, Lane WS, Toh B-H, Shpetner HS, Corvera S (1997) Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 94: 7326–7330

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer SR (1996) Transport vesicle docking: SNAREs and associates. Annu Rev Cell Dev Biol 12: 441–461

    Article  PubMed  CAS  Google Scholar 

  • Rambourg A, Clermont Y, Hermo L, Segretain D (1987) Tridimensional structure of the Golgi apparatus of non-ciliated epithelial cells of the ductuli efferentes in rat: an electron microscopic stereoscopic study. Biol Cell 60: 103–116

    PubMed  CAS  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372: 55–63

    Article  PubMed  CAS  Google Scholar 

  • Rybin V, Ullrich O, Rubino M, Alexandrov K, Simon I, Seabra C, Goody R, Zerial M (1996) GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Nature 383: 266–269

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Novick PJ (1987) A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49: 527–538

    Article  PubMed  CAS  Google Scholar 

  • — — (1989) The Sec15 protein responds to the function of the GTP binding protein. Sec4, to control vesicular traffic in yeast. J Cell Biol 109: 1023–1036

    Article  PubMed  CAS  Google Scholar 

  • Sapperstein SK, Walter DM, Grosvenor AR, Heuser JE, Waters MG (1995) p115 is a general vesicular transport factor-related to the yeast endoplasmic-reticulum to Golgi transport factor Uso1p. Proc Natl Acad Sci USA 92: 522–526

    Article  PubMed  CAS  Google Scholar 

  • —, Lupashin VV, Schmitt HD, Waters MG (1996) Assembly of the ER to Golgi SNARE complex requires Uso1p. J Cell Biol 132: 755–767

    Article  PubMed  CAS  Google Scholar 

  • Shorter J, Warren G (1999) A role for the vesicle tethering protein, p115, in the post-mitotic stacking of reassembling Golgi cisternae in a cell-free system. J Cell Biol 146: 57–70

    PubMed  CAS  Google Scholar 

  • Simonsen A, Lippé R, Christoforidis S, Gaullier J-M, Brech A, Callaghan J, Toh B-H, Murphy C, Zerial M, Stenmark H (1998) EEA1 links phosphatidylinositol 3-kinase function to Rab5 regulation of endosome fusion. Nature 394: 494–498

    Article  PubMed  CAS  Google Scholar 

  • Sogaard M, Tani K, Ye RR, Geromanos S, Tempst P, Kirchhausen T, Rothman JE, Söllner T (1994) A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78: 937–948

    Article  PubMed  CAS  Google Scholar 

  • Sohda M, Misumi Y, Yano A, Takami N, Ikehara Y (1998) Phosphorylation of the vesicle docking protein p115 regulates its association with the Golgi membrane. J Biol Chem 273: 5385–5388

    Article  PubMed  CAS  Google Scholar 

  • Söllner T, Whitehart SW, Brunner M, Erdjumentbromage H, Geromanos S, Tempst P, Rothman JE (1993b) SNAP receptors implicated in vesicle targeting and fusion. Nature 362: 318–324

    Article  PubMed  Google Scholar 

  • Sönnichsen B, Watson R, Clausen H, Misteli T, Warren G (1996) Sorting by COP I-coated vesicles under interphase and mitotic conditions. J Cell Biol 134: 1411–1425

    Article  PubMed  Google Scholar 

  • —, Lowe M, Levine T, Jamsa E, Dirac-Svejstrup B, Warren G (1998) A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol 140: 1013–1021

    Article  PubMed  Google Scholar 

  • Stenmark H, Vitale G, Ullrich O, Zerial M (1995) Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83: 423–432

    Article  PubMed  CAS  Google Scholar 

  • —, Aasland R, Toh B-H, D'Arrigo A (1996) Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem 271: 24048–24054

    Article  PubMed  CAS  Google Scholar 

  • TerBush DR, Novick P (1995) Sec6, sec8, and sec15 are components of a multisubunit complex which localizes to small bud tips inSaccharomyces cerevisiae. J Cell Biol 130: 299–312

    Article  PubMed  CAS  Google Scholar 

  • —, Maurice T, Roth D, Novick P (1996) The exocyst is a multiprotein complex required for exocytosis inSaccharomyces cerevisiae. EMBO J 15: 6483–6494

    PubMed  CAS  Google Scholar 

  • Ting AE, Hazuka CD, Hsu SC, Kirk MD, Bean AJ, Scheller RH (1995) rSec6 and rSec8, mammalian homologies of yeast proteins essential for secretion. Proc Natl Acad Sci USA 92: 9613–9617

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (1997) Molecular architecture of tight junctions: occludin and ZO-1. Soc Gen Physiol Ser 52: 69–76

    PubMed  CAS  Google Scholar 

  • Ungermann C, Wickner W (1998) Vam7p, a vacuolar SNAP-25 homologue, is required for SNARE complex disassembly, docking and fusion. EMBO J 17: 3269–3276

    Article  PubMed  CAS  Google Scholar 

  • VanRheenen SM, Cao X, Lupashin VV, Barlowe C, Waters MG (1998) Sec35p, a novel peripheral membrane protein is required for ER to Golgi vesicle docking. J Cell Biol 141: 1107–1119

    Article  PubMed  CAS  Google Scholar 

  • Warren G, Levine T, Misteli T (1995) Mitotic disassembly of the mammalian Golgi-apparatus. Trends Cell Biol 5: 413–416

    Article  PubMed  CAS  Google Scholar 

  • Waters MG, Clary DO, Rothman JE (1992) A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack. J Cell Biol 118: 1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92: 759–772

    Article  PubMed  CAS  Google Scholar 

  • Weisman LS, Wickner W (1992) Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. J Biol Chem 267: 618–623

    PubMed  CAS  Google Scholar 

  • Wilson DW, Wilcox CA, Flynn GC, Chen E, Kuang W-J, Henzel WJ, Block MR, Ullrich E, Rothman JE (1989) A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339: 355–359

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Mayer A, Muller E, Wickner W (1997) A heterodimer of thioredoxin and IB2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J Cell Biol 136: 299–306

    Article  PubMed  CAS  Google Scholar 

  • —, Sato K, Wickner W (1998) LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell 93 1125–1134

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, De Wald DB, Boronenkov IV, Anderson RA, Emr SD, Koshland D (1995) A novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell 6: 525–539

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sönnichsen, B. Tethering molecules in membrane traffic. Protoplasma 209, 38–45 (1999). https://doi.org/10.1007/BF01415699

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01415699

Keywords

Navigation