Skip to main content
Log in

Green light for the secretory pathway

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Since the advent of green-fluorescent protein (GFP) technology there has been an explosion of interest in applying this molecule to cell biology. This review summarizes new insights in secretory membrane traffic obtained by the use of GFP fusion proteins. Transport steps between the endoplasmic reticulum and the Golgi apparatus, intra-Golgi traffic, and transport from the Golgi to the plasma membrane are discussed. In addition, insights into the dynamics of the Golgi compartment in plant cells and in mitotic mammalian cells have been included. We conclude that membrane traffic in the secretory pathway appears to be much more dynamic and diverse than previously thought and that GFP promises to be a powerful means to unravel these complex processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch WE, McCaffery JM, Plutner H, Farquhar MG (1994) Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell 76: 841–852

    Article  PubMed  CAS  Google Scholar 

  • Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Scheckman R (1994) COPII: a membrane coat formed by sec proteins that drives vesicle budding from the endoplasmic reticulum. Cell 77: 895–907

    Article  PubMed  CAS  Google Scholar 

  • Böck G, Steinlein P, Huber LA (1997) Cell biologists sort things out: analysis and purification of intracellular organelles by flow cytometry. Trends Cell Biol 7: 499–503

    Article  PubMed  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15: 441–447

    Article  PubMed  CAS  Google Scholar 

  • Brown FD, Thompson N, Saqib KM, Clark JM, Powner D, Thompson NT, Solari R, Wakelam MJO (1998) Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation. Curr Biol 8: 835–838

    Article  PubMed  CAS  Google Scholar 

  • Burke N, Han W, Li D, Takimoto K, Watkins SC, Levitan ES (1997) Neuronal peptide release is limited by secretory granule mobility. Neuron 19: 1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Kain S (1998) Green fluorescent protein: properties, applications, and protocols. Wiley-Liss, New York

    Google Scholar 

  • —, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–805

    Article  PubMed  CAS  Google Scholar 

  • Cole NB, Sciaky N, Marotta A, Song J, Lippincott-Schwartz J (1996a) Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Cell Biol 7: 631–650

    CAS  Google Scholar 

  • —, Smith CL, Sciaky N, Terasaki M, Edidin M, Lippincott-Schwartz J (1996b) Diffusional mobility of Golgi proteins in membranes of living cells. Science 273: 797–801

    Article  PubMed  CAS  Google Scholar 

  • Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173: 33–38

    Article  PubMed  CAS  Google Scholar 

  • Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20: 448–455

    Article  PubMed  CAS  Google Scholar 

  • Farquhar MG (1985) Progress in unraveling pathways of Golgi traffic. Annu Rev Cell Biol 1: 447–488

    Article  PubMed  CAS  Google Scholar 

  • Fath KR, Trimbur GM, Burgess DR (1997) Molecular motors and a spectrin matrix associate with Golgi membranes in vitro. J Cell Biol 139: 1169–1181

    Article  PubMed  CAS  Google Scholar 

  • Featherstone C (1998) Coming to grips with the Golgi. Science 282: 2172–2174

    Article  PubMed  CAS  Google Scholar 

  • Fernandez JM, Neher E, Gomperts BD (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312: 453–455

    Article  PubMed  CAS  Google Scholar 

  • Gerdes H-H, Kaether C (1996) Green fluorescent protein: applications in cell biology. FEBS Lett 389: 44–47

    Article  PubMed  CAS  Google Scholar 

  • Hauri HP, Schweizer A (1992) The endoplasmic reticulum-Golgi intermediate compartment. Curr Opin Cell Biol 4: 600–608

    Article  PubMed  CAS  Google Scholar 

  • Henkel AW, Almers W (1996) Fast steps in exocytosis and endocytosis studied by capacitance measurements in endocrine cells. Curr Opin Neurobiol 6: 350–357

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg K, Miller CM, Ellenberg J, Presley JF, Siggia ED, Phair RD, Lippincott-Schwartz J (1998) Kinetic analysis of secretory protein trafficking and characterization of Golgi to plasma membrane transport intermediates in living cells. J Cell Biol 143: 1485–1503

    Article  PubMed  CAS  Google Scholar 

  • Huttner WB, Gerdes H-H, Rosa P (1991) The granin (chromogranin/secretogranin) family. Trends Biochem Sci 16: 27–30

    Article  PubMed  CAS  Google Scholar 

  • —, Ohashi M, Kehlenbach RH, Barr FA, Bauerfeind R, Bräunung O, Corbeil D, Hannah M, Pasolli HA, Schmidt A, Schmidt AA, Thiele C, Wang Y, Krömer A, Gerdes H-H (1995) Biogenesis of neurosecretory vesicles. Cold Spring Harbor Symp Quant Biol 60: 315–327

    PubMed  CAS  Google Scholar 

  • Kaether C, Gerdes H-H (1995) Visualization of protein transport along the secretory pathway using green fluorescent protein. FEBS Lett 369: 267–271

    Article  PubMed  CAS  Google Scholar 

  • —, Salm T, Glombik M, Almers W, Gerdes H-H (1997) Targeting of green fluorescent protein to neuroendocrine secretory granules: a new tool for real time studies of regulated protein secretion. Eur J Cell Biol 74: 133–142

    PubMed  CAS  Google Scholar 

  • Kreis EK, Matteoni R, Hollinshead M, Tooze J (1989) Secretory granules and endosomes show saltatory movement biased to the anterograde and retrograde directions, respectively, along microtubules in AtT20 cells. Eur J Cell Biol 49: 128–139

    PubMed  CAS  Google Scholar 

  • Lang T, Wacker I, Steyer J, Kaether C, Wunderlich I, Soldati T, Gerdes H-H, Almers W (1997) Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18: 857–863

    Article  PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz J, Smith CL (1997) Insights into secretory and endocytic membrane traffic using green fluorescent protein chimeras. Curr Opin Neurobiol 7: 631–639

    Article  PubMed  CAS  Google Scholar 

  • —, Yuan LC, Bonifacino JS, Klausner RD (1989) Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56: 801–813

    Article  PubMed  CAS  Google Scholar 

  • — Cole N, Presley J (1998) Unravelling Golgi membrane traffic with green fluorescent protein chimeras. Trends Cell Biol 8: 16–21

    Article  PubMed  CAS  Google Scholar 

  • Lochner JE, Kingma M, Kuhn S, Meliza CD, Cutler B, Scalettar BA (1998) Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell 9: 2463–2476

    PubMed  CAS  Google Scholar 

  • Lowe M, Kreis TE (1998) Regulation of membrane traffic in animal cells by COPI. Biochim Biophys Acta 1404: 53–66

    Article  PubMed  CAS  Google Scholar 

  • Martin TFJ (1997) Stages of regulated exocytosis. Trends Cell Biol 7: 271–276

    Article  PubMed  CAS  Google Scholar 

  • Miesenböck G, Angelis DAD, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394: 192–195

    Article  PubMed  Google Scholar 

  • Mironov AA, Weidman P, Luini A (1997) Variations on the intracellular transport theme: maturing cisternae and trafficking tubules. J Cell Biol 138: 481–484

    Article  PubMed  CAS  Google Scholar 

  • Nakata T, Terada S, Hirokawa N (1998) Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J Cell Biol 140: 659–674

    Article  PubMed  CAS  Google Scholar 

  • Neher E (1998) Vesicle pools and Ca2+microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20: 369–399

    Article  Google Scholar 

  • Nickel W, Wieland FT (1998) Biosynthetic protein transport through the early secretory pathway. Histochem Cell Biol 109: 477–486

    Article  PubMed  CAS  Google Scholar 

  • Pouli AE, Emmanouilidou E, Zhao C, Wasmeier C, Hutton JC, Rutter GA (1998a) Secretory-granule dynamics visualized in vivo with a phogrin-green fluorescent protein chimaera. Biochem J 333: 193–199

    PubMed  CAS  Google Scholar 

  • —, Kennedy HJ, Schofield JG, Rutter GA (1998b) Insulin targeting to the regulated pathway after fusion with green fluorescent protein and firefly luciferase. Biochem J 331: 669–675

    PubMed  CAS  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of theAequorea victoria green fluorescent protein. Gene 111: 229–233

    Article  PubMed  CAS  Google Scholar 

  • Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJM, Lippincott-Schwartz J (1997) ER-to-Golgi transport visualized in living cells. Nature 389: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Rambourg A, Clermont Y (1990) Tridirnensional electron microscopy: structure of the Golgi apparatus. Eur J Cell Biol 51: 189–200

    PubMed  CAS  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372: 55–63

    Article  PubMed  CAS  Google Scholar 

  • — Wieland FT (1996) Protein sorting by transport vesicles. Science 272: 227–234

    Article  PubMed  CAS  Google Scholar 

  • Saraste J, Kuismanen E (1984) Pre- and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell 38: 535–549

    Article  PubMed  CAS  Google Scholar 

  • —, Svensson K (1991) Distribution of the intermediate elements operationg in ER to Golgi transport. J Cell Sci 100: 415–430

    PubMed  CAS  Google Scholar 

  • Scales SJ, Pepperkok R, Kreis TE (1997) Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90: 1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Shima DT, Haldar K, Pepperkok R, Watson R, Warren G (1997) Partitioning of the Golgi apparatus during mitosis in living HeLa cells. J Cell Biol 137: 1211–1228

    Article  PubMed  CAS  Google Scholar 

  • —, Cabrera-Poch N, Pepperkok R, Warren G (1998) An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J Cell Biol 141: 955–966

    Article  PubMed  CAS  Google Scholar 

  • Steyer JA, Horstmann H, Almers W (1997) Transport, docking and exocyotsis of single secretory granules in live chromaffin cells. Nature 388: 474–478

    Article  PubMed  CAS  Google Scholar 

  • Stow JL, Fath KR, Burgess DR (1998) Budding roles for myosin II on the Golgi. Trends Cell Biol 8: 138–141

    Article  PubMed  CAS  Google Scholar 

  • Toomre D, Keller P, White J, Olivo J-C, Simons K (1998) Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J Cell Sci 112: 21–33

    Google Scholar 

  • Wacker I, Kaether C, Krömer A, Migala A, Almers W, Gerdes H-H (1997) Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J Cell Sci 110: 1453–1463

    PubMed  CAS  Google Scholar 

  • Wang S, Hazelrigg T (1994) Implications forbcd mRNA localisation from spatial distribution ofexu protein inDrosophila oogenesis. Nature 369: 400–403

    Article  PubMed  CAS  Google Scholar 

  • Warren G (1993) Membrane partitioning during cell division. Annu Rev Biochem 62: 323–348

    Article  PubMed  CAS  Google Scholar 

  • Westphal M, Jungbluth A, Heidecker M, Mühlbauer B, Heizer C, Schwartz J-M, Marriott G, Gerisch G (1997) Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr Biol 7: 176–183

    Article  PubMed  CAS  Google Scholar 

  • Wooding S, Pelham HRB (1998) The dynamics of Golgi protein traffic visualized in living yeast cells. Mol Biol Cell 9: 2667–2680

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerdes, H.H., Rudolf, R. Green light for the secretory pathway. Protoplasma 209, 1–8 (1999). https://doi.org/10.1007/BF01415695

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01415695

Keywords

Navigation