Skip to main content
Log in

Spectrum of the Casimir effect on a torus

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

The finite (zeta-regularized) energy density of the Casimir effect is decomposed into finite contributions corresponding to a continuous spectrum of frequencies. This is done in a purely discrete way which respects at each step the quantized nature of the effect. The general equations that any such spectral decomposition must obey are derived, and several specific mathematical realizations of the same are given. As is explicitly shown with the physical Planck spectrum, this procedure opens the way to the obtaintion of some particular solutions which could be checked experimentally. In particular, expressions for the spectral decompositions are obtained for the cases of a circumferenceC 1 and of a torusT 2, and for the respectively related cases of one and two pairs of parallel plates, in 1+1 and 3+1 spacetime dimensions, for a massless scalar and for an electromagnetic field, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.B.G. Casimir: Proc. Kon. Ned. Akad. Wet. 51 (1948) 793

    Google Scholar 

  2. E.M. Lifshitz: Sov. Phys. JETP 2 (1956) 73; L.S. Brown, G.J. Maclay: Phys. Rev. 184 (1969) 1272

    Google Scholar 

  3. T.H. Boyer: Phys. Rev. 174 (1968) 1764; R. Balian, R. Duplantier: Ann. Phys. (NY) 112 (1978) 165; K.A. Milton, L.L. DeRaad, Jr., J. Schwinger: Ann. Phys. (NY) 115 (1978) 388; D. Deutsch, P. Candelas: Phys. Rev. D20 (1979) 3063; S. Paban, R. Tarrach, E. Verdaguer; Phys. Lett. B195 (1987) 240; K. Dietz: Vacuum fluctuations in radiation and matter fields. Bonn Univ. preprint, AM-87-05, and references therein

    Google Scholar 

  4. G. Plunien, B. Müller, W. Greiner: Phys. Rep. 134 (1986) 87

    Google Scholar 

  5. L.H. Ford: Phys. Rev. D 38 (1988) 528

    Google Scholar 

  6. E. Elizalde: J. Phys. A 22 (1989) 931

    Google Scholar 

  7. A. Erdélyi (ed.): Higher transcendental functions, Vol. I, New York: McGraw-Hill 1953; M. Abramowitz, I.A. Stegun, (eds.): Handbook of mathematical functions. New York: Dover 1972

    Google Scholar 

  8. S.K. Blau, M. Visser, A. Wipf: Nucl. Phys. B 310 (1988) 163; and preprint Max-Planck München MPI-PAE/PTh 75/88 (Los Alamos LA-UR-88-3599)

    Google Scholar 

  9. N.D. Birrell, P.C.W. Davies: Quantum fields in curved space, Cambridge UK: Cambridge University Press 1982

    Google Scholar 

  10. J. Ambjørn, S. Wolfram: Ann. Phys. (N.Y.) 147 (1983) 1; ibid. J. Ambjørn, S. Wolfram: Ann. Phys. (N.Y.) 147 (1983) 33

    Google Scholar 

  11. L.L. DeRaad, Jr., K.A. Milton: Ann. Phys. (NY) 136 (1981) 229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elizalde, E. Spectrum of the Casimir effect on a torus. Z. Phys. C - Particles and Fields 44, 471–478 (1989). https://doi.org/10.1007/BF01415563

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01415563

Keywords

Navigation