Skip to main content
Log in

Global feature space neural network for active computer vision

  • Articles
  • Published:
Neural Computing & Applications Aims and scope Submit manuscript

Abstract

We advance new active computer vision algorithms based on the Feature space Trajectory (FST) representations of objects and a neural network processor for computation of distances in global feature space. Our algorithms classify rigid objects and estimate their pose from intensity images. They also indicate how to automatically reposition the sensor if the class or pose of an object is ambiguous from a given viewpoint and they incorporate data from multiple object views in the final object classification. An FST in a global eigenfeature space is used to represent 3D distorted views of an object. Assuming that an observed feature vector consists of Gaussian noise added to a point on the FST, we derive a probability density function for the observation conditioned on the class and pose of the object. Bayesian estimation and hypothesis testing theory are then used to derive approximations to the maximum a posterioriprobability pose estimate and the minimum probability of error classifier. Confidence measures for the class and pose estimates, derived using Bayes theory, determine when additional observations are required, as well as where the sensor should be positioned to provide the most useful information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajcsy R. Active perception. Proc IEEE 1988; 76: 996–1004.

    Google Scholar 

  2. Abbott AL, Ahuja N, Auen PK et al. Promising directions in active vision. Int J Computer Vision 1993; 11: 109–126.

    Google Scholar 

  3. Callari FG, Ferrie FP. Active recognition: using uncertainty to reduce ambiguity. Proc 13th Int Conf Pattern Recognition 1996; 1: 925–929.

    Google Scholar 

  4. Casasent D, Neiberg L. Classifier and shift-invariant ATR neural networks. Neural Networks 1995; 8(7/8): 1117–1130.

    Google Scholar 

  5. Stein F, Medioni G. Structural indexing: Efficient —D object recognition. IEEE Trans PAMI 1992; 14: 125–144.

    Google Scholar 

  6. Therrien CW. Decision, Estimation, and Classification: An Introduction to Pattern Recognition and Related Topics. New York: Wiley, 1989.

    Google Scholar 

  7. Sipe M, Casasent D, Neiberg L. Feature space trajectory representation for active vision. In Applications and Science of Artificial Neural Networks III, S. Rogers, (editor), Proc Soc Photo-Optical Instrumentation Eng 1997; 3077: 254–265.

  8. Neiberg L, Casasent D, Fontana R, Cade J. Feature space trajectory neural net classifier: 8-class distortion-invariant tests. In Intelligent Robots and Computer Vision XIV: Algorithms, Techniques, Active Vision, and Materials Handling, D. Casasent (editor), Proc Soc of Photo-Optical Instrumentation Eng 1995; 2588: 540–555.

  9. Casasent D, Shenoy R. Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar. Opt Eng 1997; 36: 2719–2728.

    Google Scholar 

  10. Casasent D, Neiberg L. Time-sequential neural net classifier and pose estimator. Proc World Congress on Neural Networks 1996: 345–350.

  11. Krumm J. Eigenfeatures for planar pose measurement of partially occluded objects. Proc IEEE Con Computer Vision and Pattern Recognition 1996: 55–60.

  12. Baum EB, Haussler D. What size net gives valid generalization? Neural Computation 1989; 1: 151–160.

    Google Scholar 

  13. Smieja FJ, Richards GD. Hard learning the easy way: backpropagation with deformation. Complex Systems 1988; 2: 671–704.

    Google Scholar 

  14. Horn KSV, Martinez TR. The minimum feature set problem. Neural Networks 1994; 7(3): 491–494.

    Google Scholar 

  15. Denoeux T, Lengelle R. Initializing backpropagation networks with prototypes. Neural Networks 1993; 6(3): 351–363.

    Google Scholar 

  16. Powell MJD. Restart procedures for the conjugate gradient method. Math Programming 1977; 12: 241–254.

    Google Scholar 

  17. Casasent D, Barnard E. Adaptive-clustering optical neural net. Appl Opt 1990; 29: 2603–2615.

    Google Scholar 

  18. Raudys S, Jain A. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans PAMI 1991; 13: 252–264.

    Google Scholar 

  19. Jain A, Waller W. On the optimal number of features in the classification of multivariate Gaussian data. Patt Recognition 1978; 10: 365–374.

    Google Scholar 

  20. Neiberg L, Casasent D. Feature space trajectory neural network classifier. In Applications and Science of Artificial Neural Networks, S. Rogers and D. Ruck (editors), Proc Soc Photo-Optical Instrumentation Eng 1995; 2492: 361–372.

  21. Rumelhart DE, Hinton GE, Williams RJ. Parallel Distributed Processing, Vol. 1. Cambridge, MA: MIT Press, 1986, pp. 318–362.

    Google Scholar 

  22. Poggio T, Girosi F. Networks for approximation and learning. Proc IEEE 1990; 78: 1481–1497.

    Google Scholar 

  23. Finnoff W, Hergert F, Zimmerman HG. Improving model selection by nonconvergent methods. Neural Networks 1993; 6(6): 771–783.

    Google Scholar 

  24. Musavi M, Ahmed W, Chan K, Faris K, Hummels D. On the training of radial basis functions. Neural Networks 1992; 5(4): 595–603.

    Google Scholar 

  25. Hebert M, Krotkov E. 3D measurements from imaging laser radars: how good are they? Image and Vision Computing 1992; 10: 170–178.

    Google Scholar 

  26. Wells G, Venaille C, Torras C. Vision-based robot positioning using neural networks. Image and Vision Computing 1996; 14: 715–732.

    Google Scholar 

  27. Dickinson S, Christensen H, Tsotsos J, Olofsson G. Active object recognition integrating attention and viewpoint control. Computer Vision and Image Understanding 1997; 67(3): 239–260.

    Google Scholar 

  28. Tarabanis K, Tsai R, Kaul A. Computing occlusion-free viewpoints. IEEE Trans PAMI 1996; 18: 279–292.

    Google Scholar 

  29. Murase H, Nayar SK. Visual learning and recognition of 3-D objects from appearance. Int J Computer Vision 1995; 14: 5–24.

    Google Scholar 

  30. Murase H, Nayar S. Detection of 3d objects in cluttered scenes using hierarchical eigenspace. Patt Recognition Lett 1997; 18(4): 375–384.

    Google Scholar 

  31. Leonardis A, Bischof H. Dealing with occlusions in the eigenspace approach. Proc IEEE Conf Computer Vision and Pattern Recognition 1996; 453–458.

  32. Gonzalez RC. Syntactic Pattern Recognition. Reading, MA. Addison-Wesley, 1978.

    Google Scholar 

  33. Aeberhard S, Coomans D, Vel, OD. Comparative analysis of statistical pattern recognition methods in high dimensional settings. Patt Recognition 1992; 27: 1065–1077.

    Google Scholar 

  34. Manjunath BS, Chellappa R. Unsupervised texture segmentation using Markov random field models. IEEE Trans PAMI 1991; 13: 478–482.

    Google Scholar 

  35. Casasent D, Ashizawa S. Synthetic aperture radar detection, recognition, and clutter rejection with new minimum noise and correlation energy filters. Opt Eng 1997; 36: 2729–2736.

    Google Scholar 

  36. Rothman P. Syntactic pattern recognition. AI Expert 1992; 7: 40–51.

    Google Scholar 

  37. Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychology 1933; 24: 417–441, 498–520.

    Google Scholar 

  38. Swets DL, Weng JJ. Using discriminant eigenfeatures for image retrieval. IEEE Trans PAMI 1996; 18: 831.

    Google Scholar 

  39. Fukunaga K, Koontz WLG. Applications of the Karhunen-Loeve expansion to feature selection and ordering. IEEE Trans Comp 1970; C-19: 917–923.

    Google Scholar 

  40. Fisher RA. Contributions to Mathematical Statistics. New York: Wiley, 1950.

    Google Scholar 

  41. Talukder A, Casasent D. A general methodology for simultaneous representation and discrimination of multiple object classes. Opt Eng 1998; 37: 904–913.

    Google Scholar 

  42. Talukder A, Casasent D. Classification and pose estimation for active vision using non-linear features. Proc Soc Photo-Optical Instrumentation Eng 1998; 3386.

  43. Duda RO, Hart PE. Pattern Classification and Scene Analysis. New York: Wiley, 1973.

    Google Scholar 

  44. Specht DF. Probabilistic neural networks. Neural Networks 1990; 3(1).

  45. Nene SA, Nayar SK, Murase H. Columbia image object library (COIL-20). Technical Report CUCS-006-96, Department of Computer Science, Columbia University, New York, NY 10027, 1996.

    Google Scholar 

  46. Papoulis A. Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, 1984.

    Google Scholar 

  47. Casasent D, Sipe MA. Feature space trajectory representation and processing for active vision. In Intelligent Robots and Computer Vision XV: Algorithms, Techniques, Active Vision, and Materials Handling: Proc Soc Photo-Optical Instrumentation Eng 1996; 2904: 390–401.

    Google Scholar 

  48. Regli WC, Gaines DM. National repository for design and process planning. National Science Foundation Design and Manufacturing Conference, Seattle, WA, January 1997.

  49. Foley JD, van Dam A, Feiner SK, Hughes JF. Computer Graphics: Principles and Practice. Reading, MA: Addison-Wesley, 1996.

    Google Scholar 

  50. Van Trees HL. Detection, Estimation, and Modulation Theory. New York: Wiley, 1968, pp. 19–165.

    Google Scholar 

  51. Johnson R. Elementary Statistics. London: Duxbury Press, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipe, M.A., Casasent, D. Global feature space neural network for active computer vision. Neural Comput & Applic 7, 195–215 (1998). https://doi.org/10.1007/BF01414882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01414882

Keywords

Navigation