Skip to main content
Log in

The Sedov self-similar point blast solutions in nonuniform media

  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The character of a spherical blast wave propagating radially outward in a pressureless medium with density decreasing asτ −ω changes dramatically asω and the adiabatic indexγ vary. Plots of the Sedov formulas for the density, velocity, and pressure profiles behind the shock front for a selection of different parameters illustrate this and suggest that some of the solutions satisfy the conditions for the Rayleigh-Taylor or convective instablity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernstein IB, Book DL (1978) Rayleigh-Taylor instability of a self-similar spherical expansion. Astrophys J 225:633

    Article  Google Scholar 

  • Bernstein IB, Book DL (1980) Stability of the Primakoff-Sedov blast wave and its generalizations. Astrophys J 240:223

    Article  Google Scholar 

  • Bodner SE (1974) Rayleigh-Taylor instability and laser pellet fusion. Phys Rev Lett 33:761

    Article  Google Scholar 

  • Book DL (1979) Convective instability of self-similar expansion into vacuum. J Fluid Mech 95:779

    Google Scholar 

  • Butler DS (1954) Converging spherical and cylindrical shocks. Rept No 54/54, Armament Research and Development Establishment, Ministry of Supply, Ft. Halstead, Kent

    Google Scholar 

  • Chernyi GG (1957) The problem of a point explosion. Dokl Akad Nauk SSSR 112:213

    Google Scholar 

  • Chevalier RA (1976) The hydrodynamics of type II supernovae. Astrophys J 207:872

    Article  Google Scholar 

  • Grigorian SS (1958) Limiting self-similar one-dimensional nonsteady motion of a gas (Cauchy's problem and the piston problem). J Appl Math Mech 22:187

    Google Scholar 

  • Guderley G (1942) Starke Kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse Luftfahrt-forschung 19:302

    Google Scholar 

  • Hunter C (1960) On the collapse of an empty cavity in water. J Fluid Mech 8:241

    Google Scholar 

  • Kidder RE (1974) Theory of homogeneous isentropic compression and its application to laser fusion. Nucl Fusion 14:53

    Google Scholar 

  • Kidder RE (1976) Laser-driven compression of hollow shells: power requirements and stability limitations. Nucl Fusion 16:3

    Google Scholar 

  • Kohlberg I, Book DL (1991) Use of the thin-shell model to analyze stability of spherical blast waves in a medium of variable ambient density. In: Takayama K (ed) Proc 18th Inter Symp Shock Waves, Springer-Verlag, Berlin

    Google Scholar 

  • Korobeinikov VP, Mel'nikova NS, Ryazanov YeV (1961) Teoriya Tochech-nogo Vzryva. FizMatLit, Leningrad. [Transl. (1962) The theory of point explosion. JPRS 14, 334, U.S. Dept. of Commerce, Washington, DC], Chap. 2

    Google Scholar 

  • Landau LD, Lifshitz EM (1987) Fluid Mechanics, 2nd ed. Pergamon, Oxford, Chap. 1

    Google Scholar 

  • Leonard TA, Mayer FJ (1975) Helium blast-wave measurements of laser heated microshell targets. J Appl Phys 46:3562

    Article  Google Scholar 

  • Lifshitz E (1946) On the gravitational instability of the expanding universe. J Phys (USSR) 10:116

    Google Scholar 

  • von Neumann J (1941) The point source solution. NDRC Division B Rept AM-9. Reprinted in (1963) Taub AH (ed) John von Neumann collected works. Pergamon, Oxford, pp 219–237

    Google Scholar 

  • Oppenheim AK, Kuhl AL, Lundstrom EA, Kamel MM (1972) A parametric study of self-similar blast waves. J Fluid Mech 52:657

    Google Scholar 

  • Ripin BH, Grun J, Lee TN, Manka CK, Mclean EA, Mostovych AN, Pawley C, Peyser TA, Stamper JA (1988) Structuring processes in expanding laser-produced plasmas. In: Hora H, Miley GH (eds) Laser interaction and related plasma phenomena, Vol. 8. pp 417–433

  • Ryu D, Vishniac ET (1987) The growth of linear perturbations of adiabatic shock waves. Astrophys J 313:820

    Article  Google Scholar 

  • Sakurai A (1953) On the propagation and structure of a blast wave: I. J Phys Soc Jpn 8:662

    Google Scholar 

  • Sedov LI (1946) The movement of air in a strong explosion. Dokl Akad Nauk SSSR 52:17

    Google Scholar 

  • Sedov LI (1959) Similarity and dimensional methods in mechanics. Academic Press, New York, Chap. 4

    Google Scholar 

  • Takabe H, Mima K, Montierth L, Morse RL (1985) Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma. Phys Fluids 28:3676

    Article  Google Scholar 

  • Taylor GI (1941) The formation of a blast wave by a very intense explosion. Brit Rept RC-210. Reprinted in (1950) Proc Roy Soc A 186:159

    Google Scholar 

  • Vishniac ET, Ryu D (1989) On the stability of decelerating shocks. Astrophys J 337:917

    Article  Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. Wiley, New York, Chap. 8

    Google Scholar 

  • Zel'dovich YaB, Raizer YuP (1966) Physics of shock waves and high-temperature hydrodynamic phenomena, vol. I. Academic Press, New York, Chap. 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Book, D.L. The Sedov self-similar point blast solutions in nonuniform media. Shock Waves 4, 1–10 (1994). https://doi.org/10.1007/BF01414626

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01414626

Key words

Navigation