Skip to main content
Log in

On the decisive role of finite chain extensibility and global interactions in networks

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The stress-strain dependence of dry networks at unidirectional extension and compression is studied. The phenomenological van der Waals equation of state is compared with different molecular models in order to provide an interpretation of the van der Waals corrections. It is shown that the stress-strain behavior predicted by the phantom, Langevin, and constrained junction fluctuation models are altogether covered by the van der Waals approach. The relationship between the suppression of junction fluctuation parameter introduced by Dossin and Graessley and the van der Waals corrections has been worked out. The effect of junction functionality on the small strain modulus as well as on the second Mooney-Rivlin coefficient is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flory PJ (1959) Principles of Polymer Chemistry. Cornell University Press, Ithaca

    Google Scholar 

  2. Treloar LRG (1967) The Physics of Rubber Elasticity. Clarendon Press, Oxford

    Google Scholar 

  3. Kuhn W (1936) J Chem Phys 76:258

    Google Scholar 

  4. James H, Guth E (1947) J Chem Phys 15:669

    Google Scholar 

  5. Graessley W (1975) Macromolecules 8:186

    Google Scholar 

  6. Doi M, Edwards SF (1978) J Chem Soc Faraday Trans 2, 74:1802

    Google Scholar 

  7. Erman B, Flory PJ (1982) Macromolecules 15:800

    Google Scholar 

  8. Ronca G, Allegra G (1975) J Chem Phys 63:4990

    Google Scholar 

  9. Queslel JP, Mark JE (1984) Adv Polym Sci 65:137

    Google Scholar 

  10. Smith TL (1977) Treatise on Materials Science and Technology. Ed Schultz JM 369

  11. Kovac J, Crabb C (1982) Macromolecules 15:537

    Google Scholar 

  12. Ball RC, Doi M, Edwards SF, Warner M (1981) Polymer 22:1010

    Google Scholar 

  13. Marrucci G (1979) Rheol Acta 18:123

    Google Scholar 

  14. Dossin LM, Graessley W (1979) Macromolecules 12:123

    Google Scholar 

  15. Kilian HG (1981) Polymer 22:209

    Google Scholar 

  16. Kilian HG, Unseld K, Jaeger E, Müller J, Jungnickel B (1985) Colloid Polym Sci 263:607

    Google Scholar 

  17. Kilian HG, Vilgis T (1984) Colloid Polym Sci 262:15

    Google Scholar 

  18. Langley NR (1968) Macromolecules 1:348

    Google Scholar 

  19. Gleim W, Oppermann W, Rehage G (1986) Makromol Chem 187:1273

    Google Scholar 

  20. Mark JE, Sullivan JL (1977) J Chem Phys 3:1006

    Google Scholar 

  21. James HM, Guth E (1943) J Chem Phys 11:455

    Google Scholar 

  22. Guth E (1966) J Polym Sci C 12:89

    Google Scholar 

  23. Gottlieb M, Macosco CW, Benjamin GS, Meyers KO, Merril EW (1981) Macromolecules 14:1039

    Google Scholar 

  24. Kilian HG, Schenk H, Wolff S (1987) Colloid Polym Sci 265:410

    Google Scholar 

  25. Vilgis T, Kilian HG (1986) Colloid Polym Sci 264:137

    Google Scholar 

  26. Lorente MA, Mark JE (1980) Macromolecules 13:325

    Google Scholar 

  27. Gaylord RJ (1982) Polym Bull 8:325

    Google Scholar 

  28. Edwards SF (1977) Br Polym J 9:140

    Google Scholar 

  29. Rivlin RS, Saunders DW (1951) Phil Trans R Soc London A 243:251

    Google Scholar 

  30. Pak H, Flory PJ (1979) J Polym Sci 17:184

    Google Scholar 

  31. Chen RYS, Yu CU, Mark JE (1973) Macromolecules 6:746

    Google Scholar 

  32. Oppermann W, Rennar N (1987) Progr Colloid Polym Sci 75:49

    Google Scholar 

  33. Mullins L (1959) J Appl Polym Sci 2:257

    Google Scholar 

  34. Kilian HG, Enderle HF, Unseld K (1986) Colloid Polym Sci 264:866

    Google Scholar 

  35. Gottlieb M, Macosko CW, Lepsch TC (1981) J Polym Sci 19:1603

    Google Scholar 

  36. Horkay F, Nagy M, Zrinyi M (1980) Acta Chim Acad Sci Hung 103:387

    Google Scholar 

  37. Zrinyi M, Horkay F (1982) J Polym Sci Phys 20:815

    Google Scholar 

  38. Horkay F, Zrinyi M (1984) Macromolecules 17:2805

    Google Scholar 

  39. Horkay F, Nagy M, Zrinyi M (1981) Acta Chim Acad Hung 108:287

    Google Scholar 

  40. Edwards SF, Vilgis TH (1986) Polymer 27:483

    Google Scholar 

  41. Edwards SF, Vilgis TH (1988) Rep Prog Phys 51:243

    Google Scholar 

  42. Kilian H-G (1980) Polym Bull 3:151

    Google Scholar 

  43. Chompff AJ (1977) Chemistry and Properties of Crosslinked Polymers. Academic Press, New York, San Francisco, London p 375

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zrinyi, M., Kilian, H.G. & Horkay, E. On the decisive role of finite chain extensibility and global interactions in networks. Colloid & Polymer Sci 267, 311–322 (1989). https://doi.org/10.1007/BF01413624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01413624

Key words

Navigation