Skip to main content
Log in

The effect of the amphiprotic nature of human hair keratin on the adsorption of high charge density cationic polyelectrolytes

  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Adsorption of the cationic polymers poly(methacrylamidopropyltrimethyl ammonium chloride) (PMAPTAC) and poly(1,1-dimethylpiperidinium-3,5-diallylmethylene chloride) (PDMPDAMC) on human hair was studied by measurements of the amount of polymer adsorbed and by the streaming potential method. Results reflect the amphoteric nature of the keratin surface and show that the excess of anionic sites at pH values above 4 is the main driving force for the adsorption of cationic polyelectrolytes. Lowering the pH below 4 or addition of neutral salt (KCl) reduces the amount of adsorbed polymer. It was shown that the adsorption of cationic polymer in the concentration range 0.01 to 0.1 % and at neutral pH reverses the overall character of the surface from anionic to cationic. Keratin fibers modified in this manner do not exhibit amphoteric character and bear excess positive charge in the pH range 2–9.5. The value of the amount of the polymer adsorbed at saturation concentration (∼2 mg/g) as well as the lack of molecular weight effect in the range (5 · 104 − 106) on the amount of polymer adsorbed suggest that polymer chains adopt a rather extended conformation on the fiber surface. Some data concerning the formation of a complex between adsorbed cationic polymer and anionic detergents or polyelectrolytes are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goddard ED, Faucher JA, Scott RJ, Turney ME (1975) J Soc Cosmet Chem 26:539

    Google Scholar 

  2. Faucher JA, Goddard ED, Hannan RB (1977) Text Res J 47)9):616

    Google Scholar 

  3. Onabe F (1979) J Appl Polym Sci 22:3495; (1979) ibid 23:2909; (1979) ibid 23:2999; (1979) ibid 24:1629

    Google Scholar 

  4. Somasundaran P, Kulkarni RD (1973) J Coll Interf Sci 45(3):591

    Google Scholar 

  5. Nardin U, Papirer E, Schultz J (1982) J Coll Interf Sci 88:204

    Google Scholar 

  6. Ball B, Furstenau DW (1973) Miner Sci Eng 5:267

    Google Scholar 

  7. Cook HD, Smith IT (1971) Appl Polym Symp 18:663

    Google Scholar 

  8. Parreira HC (1980) J Coll Interf Sci 75:212

    Google Scholar 

  9. Davies JT, Rideal EK (1961) Interfacial Phenomena, Academic Press, New York — London, p 114

    Google Scholar 

  10. Robertson AA, Mason SG (1949) Pulp Paper Mag Can 50(13):103

    Google Scholar 

  11. Morris C, Dubin P, Garcia, unpublished data

  12. Onabe F (1982) Mokusai Gakkaishi 28:445

    Google Scholar 

  13. Horn D, Heuck C (1983) J Biol Chem 258:1665

    PubMed  Google Scholar 

  14. Dubin P, Levy I (1982) J Chromatogr 235:377

    Google Scholar 

  15. Wolfram L (1981) (eds) Orfanos, Montagna, Stuttgen, Hair Research, Springer Verlag, Berlin — Heidelberg, pp 479–500

    Google Scholar 

  16. Steinhard J, Reynolds JA (1969) Multiple Equilibria in Proteins, Academic Press, New York-London, p 178

    Google Scholar 

  17. Healy TW, White LR (1978) Adv Coll Interf Sci 9:303

    Google Scholar 

  18. For a given species, molar extent of reaction is defined ase=(ni-ni o)/Vi whereni o is the initial number of moles of speciesi, ni is the number of moles of speciesi after conversion andv i is stoichiometic coefficient

  19. Shaw DJ (1980) Introduciton to Colloid and Surface Chemistry, Butterworths, London — Boston, p 153

    Google Scholar 

  20. Faucher JA, Goddard ED (1976) J Coll Interf Sci 55(2):313

    Google Scholar 

  21. Hesselink FTh (1977) J Coll Interf Sci 60(3):448

    Google Scholar 

  22. Fantana BJ (1971) (ed) Hair ML, The Chemistry of Biosurfaces, Vol I, Marcel Dekker, New York

    Google Scholar 

  23. Dawkins JV, Guest MJ, Taylor G (1982) (ed) Tadros ThF, The Effect of Polymers on Dispersion Properties, Academic Press, London — New York, p 45

    Google Scholar 

  24. Belton D, Stupp SI (1983) Macromol 16(7):1143

    Google Scholar 

  25. For polymer-polymer complexes: Michaels AS, Uiv L, Schneider NS (1965) J Phys Chem 69:1447; Cundall RB, LawtonJB, Murray D (1979) Makromol Chem 180:2913; Tsuchida E, Osada Y, Sanada K (1972) J Polym Sci 10:3397

    Google Scholar 

  26. For polymer-detergent complexes: Goddard ED, Hanna RB (1976) J Coll Interf Sci 55:73; Hayakawa K, Santerre JP, Kwak JCT (1983) Makromol 16:1642 and the references cited therein; Dubin P, Oteri R (1983) J Coll Interf Sci 95(2):453

    Google Scholar 

  27. Wolfram LJ, Cohen D, Tehrani N (1983) US Patent 4 416 297, to Clairol Inc

  28. March J (1977) Advanced Organic Chemistry, McGraw-Hill, New York, p 227

    Google Scholar 

  29. Jachowicz J, Wis-Surel G, Garcia M (1985) J Soc Cosmet Chem 36:189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jachowicz, J., Berthiaume, M. & Garcia, M. The effect of the amphiprotic nature of human hair keratin on the adsorption of high charge density cationic polyelectrolytes. Colloid & Polymer Sci 263, 847–858 (1985). https://doi.org/10.1007/BF01412964

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01412964

Key words

Navigation