Skip to main content
Log in

Mechanism of lamellar spacing adjustment in directionally frozen agar gels

  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A theory is presented for predicting the size of ice crystals which result from steady-state, unidirectional growth within aqueous agar gels. Cellular arrays of adjacent ice crystals were separated by an amorphous water-agar membrane at a composition near the vitrification point. Using this vitrification composition and both a steady-state condition and a minimum free energy criterion, the size of ice crystals was predicted for a given solidification velocity and diffusion condition. It was found, however, that this simple model could not predict the trend towards larger crystal sizes that was observed when the initial agar concentration in the gels increased from 3% to 10% by weight agar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlberg T, Fredriksson H (1977) J Crystal Growth 42:526

    Article  CAS  Google Scholar 

  2. Nash GE (1977) J Crystal Growth 38:155

    Article  CAS  Google Scholar 

  3. Tiller WA (1958) Polyphase Solidification in Liquid Metals and Solidification, American Society for Metals, Cleveland, Ohio

    Google Scholar 

  4. Coulet AL, Billia B, Capella I (1981) J Crystal Growth 51:106

    Article  CAS  Google Scholar 

  5. Donaghey LF, Tiller WA (1967) in Conf on Solidification of Metals, Brighton, p 87

  6. Sekerka RF (1968) J Crystal Growth 3, 4:71

    Article  Google Scholar 

  7. Jesse RE, Giller HFJI (1970) J Crystal Growth 7:348

    Article  CAS  Google Scholar 

  8. Burtron P (1982) J Phys Chem 87:4237

    Google Scholar 

  9. Renn DW (1984) Ind Eng Chem Prod Res Dev 23:17

    Article  CAS  Google Scholar 

  10. Alberola N, Perez J, Tatibouet J, Vassoille R (1983) J Phys Chem 87:4264

    Article  CAS  Google Scholar 

  11. Jellinek HHG, Fok SY (1967) Kolloid-Z and Z Polym 220:122

    Article  CAS  Google Scholar 

  12. Jellinek HHG (1972) (ed) Home RA, The Ice Interface in Water and Aqueous Solutions, Ch 3, Wiley Intersiences, New York

    Google Scholar 

  13. Jellinek HHG, Fok SY (1967) Die Makromolekulare Chemie 104:18

    Article  CAS  Google Scholar 

  14. Kuhn W, Block R, Lauger P (1963) Kolloid-Z u 2 Polymere 103:1

    Article  Google Scholar 

  15. Tong HM, Noda I, Gryte CC (1984) Colloid and Polym Sci 262:589

    Article  CAS  Google Scholar 

  16. Bolling GF, Tiller WA (1961) J Appl Phys 32:2587

    Article  CAS  Google Scholar 

  17. Einstein A (1956) Investigations on the Theory of Brownian Movement, Dover Publications Inc, New York

    Google Scholar 

  18. Armstrong AA, Stannett V (1965) Makromolek Chem 90:145

    Article  Google Scholar 

  19. Kishimoto A, Maekawa E, Hujita H (1960) Bull Chem Soc, Japan 33:988

    Article  CAS  Google Scholar 

  20. Hillert M (1975) Metall Trans A6:5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, H.M., Gryte, C.C. Mechanism of lamellar spacing adjustment in directionally frozen agar gels. Colloid & Polymer Sci 263, 147–155 (1985). https://doi.org/10.1007/BF01412789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01412789

Key words

Navigation