Skip to main content
Log in

Molecular theory ofK-vacancy production in heavy-ion-atom collisions at small impact parameters

  • Atoms
  • Published:
Zeitschrift für Physik A Atoms and Nuclei

Abstract

1 vacancy production is calculated by approximating the 1 molecular wave function with an atomic 1s wave function for a chargeZ(R) centered at a distanceh(R) from the heavier nucleus.h(R) andZ(R) are determined by minimizing the 1 electronic energy. Previous calculations with the atomic semi-classical approximation (h=0,Z(R)=Z 2, the target atomic number) showed that the probability of making CuK vacancies in 0.5- to 2-MeV/a.m.u. H+, D+, and He++Cu collisions can be written asP(θ)=A(1+Bcosθ), whereθ is the scattering angle andA andB are constants forθ≳10°. Although the recoil and dipole excitation contributions toP(θ) (which interfere destructively in the atomic theory) are independently smaller in the molecular calculations, similarB values are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burch, D., Ingalls, W.B., Wiemann, H., Vandenbosch, R.: Phys. Rev. A10, 1245 (1974)

    Google Scholar 

  2. Anholt, R.: Phys. Rev. A17, 834 (1978)

    Google Scholar 

  3. Andersen, J.U., Kocbach, L., Laegsgaard, E., Lund, M., Moak, C.D.: J. Phys. B9, 3247 (1976)

    Google Scholar 

  4. Chemin, J.F., Andriamonje, S., Roturier, J., Saboya, B., Gayet, R., Salin, A.: Phys. Lett.67A, 116 (1978)

    Google Scholar 

  5. Amundsen, P.A.: J. Phys. B11, 3197 (1978)

    Google Scholar 

  6. Ciochetti, G., Molinari, A.: Nuovo Cim. B40, 69 (1965)

    Google Scholar 

  7. Anholt, R., Meyerhof, W.E.: Phys. Rev. A16, 190 (1977)

    Google Scholar 

  8. Andersen, J.U., Laegsgaard, E., Lund, M. Moak, C.D.: Nucl. Inst. Meth.132, 507 (1976)

    Google Scholar 

  9. Briggs, J.S.: J. Phys. B8, 1485 (1975)

    Google Scholar 

  10. Amundsen, P.A.: J. Phys. B11, L737 (1978)

    Google Scholar 

  11. Jakubassa, D.H.: Z. Physik A285, 249 (1978)

    Google Scholar 

  12. Fröberg, C.E.: Introduction to Numerical Analysis. p. 40 Reading: Addison-Wesley 1965

    Google Scholar 

  13. Kleber, M., Unterseer, K.: Z. Physik A292, 311 (1979)

    Google Scholar 

  14. Schmidt, G.B.: Phys. Rev. A15, 1459 (1977)

    Google Scholar 

  15. Anholt, R.: Ph. D. thesis, Univ. California Berkeley, unpublished, Lawrence Berkeley Laboratory report LBL-4312 (1975)

  16. Hansteen, J.M., Johnsen, O.M., Kocbach, L.: At. Data. Nucl. Data Tables15, 305 (1975)

    Google Scholar 

  17. Bang, J., Hansteen, J.M.: Kgl. Dan. Vidensk. Mat.-Fys. Med13, No 13 (1959)

  18. Kocbach, L.: Z. Physik A279, 233 (1976)

    Google Scholar 

  19. Kocbach, L.: Phys. Norv.8, 187 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

W.E. Meyerhof, by asking whether one should use the Briggs model or the Andersen model for 1sσ excitation drew my attention to this problem. P.A. Amundsen drew my attention to Jakubassa's paper. This work was supported in part by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anholt, R. Molecular theory ofK-vacancy production in heavy-ion-atom collisions at small impact parameters. Z Physik A 295, 201–208 (1980). https://doi.org/10.1007/BF01412198

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01412198

Keywords

Navigation