Skip to main content

Advertisement

Log in

Influence of blood supply, thermal and mechanical traumata on hearing function in an animal model

  • Experimental Research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

Even with modern neurosurgical techniques preservation of functional hearing in acoustic neurinoma surgery is still impossible in a large number of cases. Due to the necessity of averaging the brainstem auditory evoked potentials (BAEP) this monitoring is not a real time measurement. Therefore the surgeon cannot be sure which manipulation during the tumour dissection has caused the loss of the BAEPs. The direct monitoring of the cochlear nerve (CNAP) may warn the surgeon earlier. But it is not able to explain, which manipulation has caused the worsening of the potentials. A loss of the waves after coagulation of a vessel next to the cochlear nerve may be the result of the heat or of the disturbance of the blood supply. Potentially harmful to cochlear nerve function may be the interruption of inner ear blood supply, thermal or mechanical traumta. Experimental studies are rare to nonexistent. We therefore tested selectively each trauma for its influence on the BAEPs in an animal model. In New Zealand rabbits a lateral craniectomy of the posterior fossa was performed. Care was taken not to retract the cerebellum or to open the inner ear system, because both factors might disturb the BAEPs. Each step of the operation was followed by BAEP recording. After reaching the internal auditory canal, the cerebellopontine angle of 6 animals was exposed to heated water with definitive increasing temperature. The BAEPs did not react significantly until 71 °C was reached and protein coagulation started. In the second group, the internal auditory artery of 6 rabbits was compressed with a microdissector for 3 minutes. Subsequently the BAEPs disappeared in all animals. In the last group a constant pressure of 10 g was applied to 6 cochlear nerves for 1 minute consistently causing the loss of the BAEPs. The results are statistically significant (p=0.03). We therefore concluded that the blood supply of the inner ear is of the upmost importance for cochlear nerve function. Mechanical manipulation should be minimized whereas thermal traumatization of the nerve is only critical when the nerve itself is coagulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anson BJ, Winch TR, Warpeha RL, Donaldson JA (1966) The blood supply of the otic capsule of the human ear. Ann Otol Rhinol Laryngol 75: 921–945

    PubMed  Google Scholar 

  2. Belal A (1979) The effects of vascular occlusion on the human inner ear. J Laryngol Otol 93: 955–968

    PubMed  Google Scholar 

  3. Belal A, Linthicum FH, House WF (1982) Acoustic tumor surgery with preservation of hearing. Am J Otol 4: 9–16

    PubMed  Google Scholar 

  4. Braun V, Richter HP (1991) Funktionelle Erhaltung des Gehörs und der Fazialisfunktion bei Akustikusneurinom-Operation. Laryngo Rhino Otol 70: 663–669

    Google Scholar 

  5. Butler RA, Honrubia V, Johnstone BM, Fernandez C (1962) Cochlear function under metabolic impairment. Ann Otol Rhinol Laryngol 71: 648–657

    PubMed  Google Scholar 

  6. Casselman JW, Kuhweide R, Dehaene I, Ampe W, Devlies F (1994) Magnetic resonance examination of the inner ear and cerebellopontine angle in patients with vertigo and/or abnormal findings at vestibular testing. Acta Otolaryngol (Stockh) [Suppl] 513: 15–27

    Google Scholar 

  7. Colletti V, Fiorino FG (1993) Electrophysiologic identification of the cochlear nerve fibers during cerebello-pontine angle surgery. Acta Otolaryngol (Stockh) 113: 746–754

    Google Scholar 

  8. Chinn J, Miller J (1975) Animal model of acoustic neuroma. Arch Otolaryngol 101: 222–226

    PubMed  Google Scholar 

  9. Domb GH, Chole RA (1980) Anatomical studies of the posterior petrous apex with regard to hearing preservation in acoustic neuroma removal. Laryngoscope 90: 1769–1776

    PubMed  Google Scholar 

  10. Ebershold MJ, Harner SG, Beatty CW, Harper CM, Quast LM (1992) Current results of the retrosigmoid approach to acoustic neurinoma. J Neurosurg 76: 901–909

    PubMed  Google Scholar 

  11. Fernandez C (1955) The effect of oxygen lack on cochlear potentials. Ann Otol Rhinol Laryngol 64: 1193–1203

    PubMed  Google Scholar 

  12. Fischer G, Fischer C, Remond J (1992) Hearing preservation in acoustic neurinoma surgery. J Neurosurg 76: 910–917

    PubMed  Google Scholar 

  13. Gardner G, Robertson JH (1988) Hearing preservation in uni lateral acoustic neuroma surgery. Ann Otol Rhinol Laryngol 97: 55–66

    PubMed  Google Scholar 

  14. Goel A, Sekhar LN, Langheinrich W, Kamerer D, Hirsch B (1992) Late course of preserved hearing and tinnitus after acoustic neurilemmoma surgery. J Neurosurg 77: 685–689

    PubMed  Google Scholar 

  15. Grundy BL, Lina A, Procopio PT, Jannetta PJ (1981) Reversible evoked potential changes of the eighth cranial nerve. Anesth Analg 60: 835–838

    PubMed  Google Scholar 

  16. Haid CT, Wigand ME (1992) Advantages of the enlarged middle cranial fossa approach in acoustic neurinoma surgery. Acta Otolaryngol (Stockh) 112: 387–407

    Google Scholar 

  17. Hardy DG, Macfarlane R, Baguley D, Moffat DA (1989) Surgery for acoustic neurinoma. J Neurosurg 71: 799–804

    PubMed  Google Scholar 

  18. Jannetta PJ, Møller AR, Møller MB (1984) Technique of hearing preservation in small acoustic neuromas. Ann Surg 200: 513–521

    PubMed  Google Scholar 

  19. Kimura R, Perlman HB (1958) Arterial obstruction of the labyrinth. Ann Otol Rhinol Laryngol 67/1: 5–25

    Google Scholar 

  20. Kimura RS (1986) Animal models of inner ear vascular disturbances. Am J Orolaryngol 7: 130–139

    Google Scholar 

  21. Konishi T, Butler RA, Fernandez C (1961) Effect of anoxia on cochlear potentials. J Acoust Soc Am 33: 349–356

    Google Scholar 

  22. Koos WT (1988) Criteria for preservation of vestibulocochlear nerve function during microsurgical removal of acoustic neurinomas. Acta Neurochir (Wien) 92: 55–66

    Google Scholar 

  23. Lumenta Ch, Reschofsky K, Bock W (1988) Effects of cerebellar retraction on brainstem auditory evoked potentials in an experimental animal model of cerebellopontine angle tumour. Surg Neurol 29: 108–114

    PubMed  Google Scholar 

  24. Mazzoni A (1969) Internal auditory canal relations at the porus acusticus. Ann Otol Rhinol Laryngol 78: 794–814

    Google Scholar 

  25. Mazzoni A (1970) Surgical anatomy of the arteries of the internal auditory canal. Arch Otolaryngol 91: 128–135

    PubMed  Google Scholar 

  26. Mazzoni A (1972) Internal auditory artery supply to the petrous bone. Ann Otol 81: 13–21

    Google Scholar 

  27. Ojemann RG (1991) Comment on: Samii M, Matthies C, Tatagiba M (1991) Intracanalicular acoustic neurinomas, Neurosurgery 29: 189–199. Neurosurgery 29: 199

    PubMed  Google Scholar 

  28. Perlman HB, Kimura R (1957) Experimental obstruction of venous drainage and arterial supply of the inner ear. Ann Otol Rhinol Laryngol 66: 537–547

    PubMed  Google Scholar 

  29. Perlman HB, Kimura R, Fernandez C (1959) Experiments on temporary obstruction of the internal auditory artery. Laryngoscope 69: 591–613

    PubMed  Google Scholar 

  30. Rowed DW, Nedzelski JM, Cashman MZ, Stanton S, Harrison RV (1988) Cochlear nerve monitoring during cerebellopontine angle operations. Can J Neurol Sci 15: 68–72

    PubMed  Google Scholar 

  31. Samii M, Matthies C, Tatagiba M (1991) Intracanalicular acoustic neurinomas. Neurosurgery 29: 189–199

    PubMed  Google Scholar 

  32. Sekiya T, Iwabuchi T, Andoh A, Kamata S (1983) Changes of the auditory system after cerebellopontine angle manipulations. Neurosurgery 12: 80–85

    PubMed  Google Scholar 

  33. Sekiya T, Okabe S, Iwabuchi T (1988a) Damage of the peripheral auditory system after operations in the cerebellopontine angle. Surg Neurol 30: 117–124

    PubMed  Google Scholar 

  34. Sekiya T, Møller AR (1988b) Effects of cerebellar retractions on the cochlear nerve: an experimental study on rhesus monkeys. Acta Neurochir (Wien) 90: 45–52

    Google Scholar 

  35. Sekiya T, Iwabuchi T, Okabe S (1990) Occurrence of vestibular and facial nerve injury following cerebellopontine angle operations. Acta Neurochir (Wien) 102: 108–113

    Google Scholar 

  36. Silverstein H, McDaniel A, Norrell H, Haberkamp T (1986) Hearing preservation after acoustic neuroma surgery with intraoperativ direct eighth cranial nerve monitoring. Part II. A classification of results. Otolaryngol Head Neck Surg 95/1: 285–291

    Google Scholar 

  37. Sohmer H, Feinmesser M (1967) Cochlear action potentials recorded from the external ear in man. Ann Otol Rhinol Laryngol 76: 427–435

    PubMed  Google Scholar 

  38. Sterkers JM, Morrison GAJ, Sterkers I, Badr El-Dine MMK (1994) Preservation of facial, cochlear, and other nerve functions in acoustic neuroma treatment. Otolaryngol Head Neck Surg 110/2: 146–155

    Google Scholar 

  39. Stöhr M, Dichgans J, Diener HC, Buettner UW (1989) Evozierte Potentiale. Springer, Berlin Heidelberg New York Tokyo, S383–453

    Google Scholar 

  40. Strauss C, Fahlbusch R, Berg M, Haid T (1989) Funktionserhaltende Mikrochirurgie bei der suboccipitalen Entfernung großer Akustikusneurinome. HNO 37: 281–286

    PubMed  Google Scholar 

  41. Symon L, Sabin HI, Bentivoglio P, Cheesman AD, Prasher D, Baratt H (1988) Intraoperative monitoring of the electrocochleogram and the preservation of hearing during acoustic neuroma excision. Acta Neurochir (Wien) [Suppl] 42: 27–30

    Google Scholar 

  42. Taniguchi M, Müller K, Schramm J, Rodel R (1992) Ergänzung des intraoperativen FAEP-Monitorings bei hörenden Akustikusneurinom-Patienten durch Nervuscochlearis-Aktionspotentiale. HNO 40: 186–192

    PubMed  Google Scholar 

  43. Tatagiba M, Samii M, Matthies C, El Azam M, Schönmayr R (1992) The significance for postoperative hearing of preserving the labyrinth in acoustic neurinoma surgery. J Neurosurg 77: 677–684

    PubMed  Google Scholar 

  44. Thomsen J, Tos M, Harmsen A (1989) Acoustic neuroma surgery: results of translabyrinthine tumour removal in 300 patients. Discussion of choice of approach in relation to overall results and possibility of hearing preservation. Br J Neurosurg 3: 349–360

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, V., Richter, H.R. Influence of blood supply, thermal and mechanical traumata on hearing function in an animal model. Acta neurochir 138, 977–982 (1996). https://doi.org/10.1007/BF01411288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01411288

Keywords

Navigation