Skip to main content

Advertisement

Log in

Keeping in mind the mind: Mental functions, networks and neurosurgery

  • Special Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

The object of the neurosurgeons daily endeavour, the human brain, is less well understood in its overall organization than any other organ. This puts the neurosurgeon in a very difficult position. However, a substantial body of knowledge has been accumulated during recent years, and scientists from a variety of different disciplines have worked out theoretical frameworks to accomodate the available data. Here we present some of the evolving concepts on the organization of the substrate of the mind. Review of the literature shows that application of mathematical neural network models to the nervous system is very successful in explaining function. An implicit aspect of neural network models is that information storage is not localized in certain neurons but that the information is stored as the global pattern of activity in the network. Because networks of the brain involve often millions of neurons, exact identification and comparison with the theoretical models is not possible today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeles M, Prut Y, Bergman H, Vaadia E (1994) Synchronization in neuronal transmission and its importance for information processing. In: Buzsaki G, Llinas R, Singer W, Berthoz A, Christen Y (eds) Temporal coding in the brain. Springer, Berlin Heidelberg New York Tokyo, pp 39–50

    Google Scholar 

  2. Andreasen NC, O'Leary DS, Cizadlo T, Arndt S, Rezai K, Watkins L, Boles Ponto LL, Hichawa RD (1995) Remembering the past: two facets of episodic memory explored with positron emission tomography. Am J Psychiatry 152: 1576–1585

    PubMed  Google Scholar 

  3. Barlow H (1994) What is the computational goal of the neocortex? In: Koch C, Davis JL (eds) Large-scale neuronal theories of the brain. MIT, Cambridge, pp 1–22

    Google Scholar 

  4. Berthoz A (1996) The role of inhibition in the hierarchical gating of executed and imagined movements. Brain Res Cogn Brain Res 3: 101–113

    PubMed  Google Scholar 

  5. Caramazza A (1996) The brain's dictionary. Nature 380: 485–486

    PubMed  Google Scholar 

  6. Crick F, Koch C (1995) Are we aware of neural activity in primary visual cortex? Nature 375: 121–123

    PubMed  Google Scholar 

  7. Crick F (1996) Visual perception: rivalry and consciousness. Nature 379: 485–486

    PubMed  Google Scholar 

  8. Damasio AR, Damasio H (1994) Knowledge: the convergence zone framework. In: Koch C, Davis JL (eds) Large-scale neuronal theories of the brain. MIT, Cambridge, pp 61–74

    Google Scholar 

  9. Damasio AR (1995) Knowing how, knowing where. Nature 375: 106–107

    PubMed  Google Scholar 

  10. Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR (1996) A neural basis for lexical retrieval. Nature 380: 499–505

    PubMed  Google Scholar 

  11. Feynman RP (1985) QED: The strange theory of light and matter. Princton University Press, Princton, pp 3–123

    Google Scholar 

  12. Flohr H (1991) Brain processes and phenomenal consciousness: a new and specific hypothesis. Theory Psychology 1: 345–362

    Google Scholar 

  13. Fodor JA (1983) The modularity of mind. MIT Press, Cambridge

    Google Scholar 

  14. Fregnac Y, Bringuier V, Baranyi A (1994) Oscillatory activity in visual cortex: a critical re-evaluation. In: Buzaski G, Llinas R, Singer W, Berthoz A, Christen Y (eds) Temporal coding in the brain. Springer, Berlin Heidelberg New York Tokyo, pp 81–101

    Google Scholar 

  15. Ellis AX, Delia Sala S, Logie RH (1996) The Bailiwick of visuo-spatial working memory: evidence from unilateral spatial neglect. Bran Res Cogn Brain Res 3: 71–78

    Google Scholar 

  16. Georgopoulos AP (1996) On the translation of directional motor cortical commands to activation of muscles via spinal interneuronal systems. Brain Res Cogn Brain Res 3: 151–155

    PubMed  Google Scholar 

  17. Grossberg S, Merrill JWL (1992) A neural network model of adaptively times reinforcement learning and hippocampal dynamics. Brain Res Cogn Brain Res 1: 3–38

    PubMed  Google Scholar 

  18. Hebb DO (1949) The organization of behaviour. Wiley, New York

    Google Scholar 

  19. Hinton GE (1992) How neural networks learn from experience. Sci Am 267: 105–109

    Google Scholar 

  20. Hopfield JJ, Tank DW (1986) Computing with neural networks: a model. Science 233: 625–633

    PubMed  Google Scholar 

  21. Hopfield JJ (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376: 33–36

    PubMed  Google Scholar 

  22. Horwitz B, Sporns O (1994) Neural modeling and functional neuroimaging. Human Brain Mapping 1: 269–283

    Google Scholar 

  23. Koch C, Crick F (1994) Some further ideas regarding the neuronal basis of awareness. In: Koch C, Davis JL (eds) Largescale neuronal theories of the brain. MIT, Cambridge, pp 93–110

    Google Scholar 

  24. Lang W, Cheyne D, Hollinger P, Gerschlager W, Lindinger G (1996) Electric and magnetic fields of the brain accompanying internal simulation of movement. Brain Res Cogn Brain Res 3: 125–129

    PubMed  Google Scholar 

  25. Leopold DA, Logothetis NK (1996) Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 379: 549–553

    PubMed  Google Scholar 

  26. Levelt WJM, Schriefers H, Meyer AS, Pechmann T, Vorberg D, Havinga J (1991) The time course of lexical access in speech production: a study of picture naming. Psychol Rev 98: 122–142

    Google Scholar 

  27. Luria AR (1966) Higher cortical functions in man. Basic Books, New York

    Google Scholar 

  28. Luria AR (1973) The working brain: an introduction to neuropsychology. Basic Books, New York

    Google Scholar 

  29. Martin A, Wiggs CL, Ungerleider LG, Haxby JV (1996) Neuronal correlates of category-specific knowledge. Nature 379: 649–652

    PubMed  Google Scholar 

  30. Marr D (1982) Vision: a computational investigation into human representation and processing of visual information. Freeman, New York

    Google Scholar 

  31. Milner B, Corkin S, Teuber HL (1968) Further analysis of the hippocampal amnesic syndrome. Neuropsychologia 6: 267–282

    Google Scholar 

  32. Minsky M (1985) The society of mind. Simon and Schuster, New York

    Google Scholar 

  33. Mitchison G, Durbin R (1992) Learning from your neighbour. Nature 355: 112–113

    PubMed  Google Scholar 

  34. Moscovitch M (1992) A neuropsychological model of memory and consciousness. In: Squire LR, Butters N (eds) Neuropsychology of memory. Guilford, New York, pp 5–22

    Google Scholar 

  35. Müller B, Reinhardt J (1990) Neural networks: an introduction. Springer, Berlin Heidelberg New York Tokyo, pp 12–143

    Google Scholar 

  36. Ojemann G, Ojemann J, Lettich E, Berger M (1989) Cortical language localization in the left, dominant hemisphere. J Neurosurg 71: 316–326

    PubMed  Google Scholar 

  37. Penrose R (1994) Shadows of the mind: a search for the missing science of consciousness. Oxford University Press, Oxford, pp 349–421

    Google Scholar 

  38. Pöppel E (1989) Taxonomy of the subjective: an evolutionary perspective. In: Brown JW (ed) Neuropsychology of visual perception. Erlbaum, Hillsdale, pp 219–232

    Google Scholar 

  39. Pulvermüller F (1992) Constituents of a neurological theory of language. Concepts in Neuroscience 3: 157–200

    Google Scholar 

  40. Rihs F, Gutbrod K, Gutbrod B, Steiger HJ, Sturzenegger M, Mattle HP (1995) Determination of cognitive hemispheric dominance by “stereo” transcranial Doppler sonography. Stroke 26: 70–73

    PubMed  Google Scholar 

  41. Rosier F, Röder B, Heil M, Henninghausen E (1993) Topographie differences of slow event-related brain potentials in blind and sighted adult human subjects during haptic mental rotation. Brain Res Cogn Brain Res 1: 145–159

    PubMed  Google Scholar 

  42. Savage-Rumbaugh S, Lewin R (1994) Kanzi: the ape at the brink of the human mind. Wiley, New York

    Google Scholar 

  43. Shallice T (1988) From neuropsychology to mental structure. Cambridge University Press, Cambridge, pp 269–304

    Google Scholar 

  44. Singer W (1994) Time as coding space in neocortical processing: a hypothesis. In: Buzsaki G, Llinas R, Singer W, Berthoz A, Christen Y (eds) Temporal coding in the brain. Springer, Berlin Heidelberg New York Tokyo, pp 51–79

    Google Scholar 

  45. Singer W (1994) Putative functions of temporal correlations in neocortical processing. In: Koch C, Davis JL (eds) Large-scale neuronal theories of the brain. MIT, Cambridge, pp 201–235

    Google Scholar 

  46. Tootell RBH, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375: 139–141

    PubMed  Google Scholar 

  47. Zeki S (1990) The motion pathways of the visual cortex. In: Blakemore C (ed) Vision: coding and efficiency. Cambridge University Press, Cambridge, pp 321–345

    Google Scholar 

  48. Zipser D (1992) Identification models of the central nervous system. Neuroscience 47: 853–862

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An Essay in Honor of the 60th Birthday of Prof. Dr. H.-J. Reulen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiger, H.J., Ilmberger, J. Keeping in mind the mind: Mental functions, networks and neurosurgery. Acta neurochir 138, 898–906 (1996). https://doi.org/10.1007/BF01411276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01411276

Keywords

Navigation