Skip to main content

Advertisement

Log in

Mild hypothermia fails to protect late hippocampal neuronal loss following forebrain cerebral ischaemia in rats

  • Experimental Research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

Anaesthetized male rats (n=86) from both Long-Evans strain (LES) (n=43) and Wistar strain (WS) (n=43) were utilized for the experiments. While three animals from each strain were used as control, 40 rats from each strain underwent up to 10 minutes forebrain ischaemia by bilateral common carotid artery (CCA) occlusion combined with systemic hypotension [Mean Arterial Blood Pressure (MABP)=50 mm/Hg]. The animals from each strain were divided into four (n=10) groups. In both strains, groups (n=10) 1 and 2, temporalis muscle (TM) and body temperatures of the animals were kept at 36–37 °C during the experiments. The groups 1 and 2 were killed in 3 and 7 days after the ischaemic insult, respectively. The groups 3 and 4 were also killed 3 and 7 days after the ischaemic insult, but the forebrain ischaemia was carried out under mild cerebral hypothermia (TM temperature = 33 °C). Pyramidal neurons of the hippocampal CA1 region from each group was evaluated semiquantitatively. In WS, groups 1 and 2 showed moderate and severe neuronal loss in the CA1 region, respectively. However, in LES while the group 1 (3 days survival) did not show any neuronal loss, group 2 showed moderate neuronal loss of the CA1 region. While in group 3 (3 days survival, hypothermia) WS and LES, hypothermia protected the CA1 region, group 4 of LES showed mild neuronal loss. However WS, group 4 (7 days survival, hypothermia) showed severe neuronal loss of the CA1 region.

It was concluded that mild hypothermia during ischaemic insults did not prevent the delayed postischaemic neuronal damage of the hippocampal CA1 region of both strains, and following 10 minutes forebrain ischaemia, male LES rats were found more resistant than male WS rats to neuronal loss of the CA1 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker AJ, Zornow MH, Grafe MR, Scheller MS, Skilling SR, Smullin DH, Larson AA (1991) Hypothermia prevents ischemia-induced increases in hippocampal glycine concentrations in rabbits. Stroke 22: 666–673

    PubMed  Google Scholar 

  2. Baldwin WA, Kirsch JR, Hurd PD, Toung WSP, Traystman RJ (1991) Hypothermic cerebral perfusion and recovery form ischemia. Am J Physiol 30: H774-H781

    Google Scholar 

  3. Berntman L, Welsh FA, Harp JR (1991) Cerebral protective effects of low-grade hypothermia. Anesthesiology 55: 495–498

    Google Scholar 

  4. Blomqvist P, Mabe H, Ingvar M, Siesjo BK (1984) Models for studying long-term recovery following forebrain ischemia in the rat. 1. Circulatory and functional effects of 4-vessel occlusion. Acta Neurol Scand 69: 376–384

    PubMed  Google Scholar 

  5. Busto R, Dietrich WD, Globus MY-T, Valdes I, Scheinberg P, Ginsberg MD (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7: 729–738

    PubMed  Google Scholar 

  6. Busto R, Globus MY-T, Martinez E, Valdes I, Ginsberg MD (1989) Effect of mild hypothermia and ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 20: 904–910

    PubMed  Google Scholar 

  7. Churn SB, Sobati S, Taft WC, DeLorenzo RJ (1993) Excitotoxicity affects membrane potential and calmoduline kinase II activity in cultured rat cortical neurons. Stroke 24: 271–278

    PubMed  Google Scholar 

  8. Coimbra C, Wielosch T (1994) Moderate hypothermia mitigates neuronal damage in the rat brain when initiated several hours following transient cerebral ischemia. Acta Neuropathol 87: 325–331

    PubMed  Google Scholar 

  9. Coyle P, Odenheimer DJ, Sing CF (1984) Cerebral infarction after middle cerebral artery occlusion in progenies of spontaneously Stroke-Prone and normal rats. Stroke 15: 711–716

    PubMed  Google Scholar 

  10. Dempsey RJ, Combs DJ, Maley ME, Cowan DE, Roy MW, Donaldson DL (1987) Moderate hypothermia reduces postischemic edema development and leukotriene production. Neurosurgery 21: 177–181

    PubMed  Google Scholar 

  11. Dietrich WD, Busto R, Halley M, Valdes I (1990) The importance of brain temperature in alteration of the blood-brain-barrier following cerebral ischemia. J Neuropath Exp Neurol 49: 589–596

    Google Scholar 

  12. Dietrich WD, Busto R, Alonso O, Globus MY-T, Ginsberg MD (1993) Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 13: 541–549

    PubMed  Google Scholar 

  13. Dietrich WD, Alonso O, Busto R, Globus MY-T, Ginsberg MD (1994) Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathol 87: 250–258

    PubMed  Google Scholar 

  14. Duverger D, MacKenzie ET (1988) The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab 8: 449–446

    PubMed  Google Scholar 

  15. Gehrmann J, Bonnekoh P, Miyazawa T, Hossmann K-A, Kreutzberg GW (1992) Immunohistochemical study of an early microglial activation in ischemia. J Cereb Blood Flow Metab 12: 257–269

    PubMed  Google Scholar 

  16. Ginsberg MD, Busto R (1989) Rodent models of cerebral ischemia. Stroke 20: 1627–1642

    PubMed  Google Scholar 

  17. Ginsberg MD, Globus MY-T, Dietrich WD, Busto R (1993) Temperature modulation of ischemic brain injury — a synthesis of recent advances. Prog Brain Res 96: 13–22

    PubMed  Google Scholar 

  18. Ginsberg MD, Sternau LL, Globus MY-T, Dietrich WD, Busto R (1992) Therapeutic modulation of brain temperature-relevance to ischemic brain injury. Cerebrovasc Brain Met Rev 4: 189–225

    Google Scholar 

  19. Hall ED, Pazara KE, Linseman KL (1991) Sex differences in postischemic neuronal necrosis in gerbils. J Cereb Blood Flow Metab 11: 292–298

    PubMed  Google Scholar 

  20. Illievich UM, Zornow MH, Choi KT, Strnat MAP, Scheller MS (1994) Effects of hypothermia or anesthetics on hippocampal glutamate and glycine concentrations after repeated transient global cerebral ischemia. Anesthesiology 80: 177–186

    PubMed  Google Scholar 

  21. Kuluz JW, Prado R, Chang J, Ginsberg MD, Schleien CL, Busto R (1993) Selective brain cooling increases cortical cerebral blood flow in rats. Am J Physiol 34: H824-H827

    Google Scholar 

  22. Kuriowa T, Bonnekoh P, Hossmann K-A (1990) Prevention of postischemic hyperthermia prevents ischemic injury of CA1 neurons in gerbils. J Cereb Blood Flow Metab 10: 550–556

    PubMed  Google Scholar 

  23. Le Poncin-Lafitte M, Grosdemouge C, Roy-Billon C, Duterte D, Potrat P, Lespinasse P, Papin IR (1981) Short-term memory and cerebral ischemia: pharmacological application. Eur Neurol 20: 265–269

    PubMed  Google Scholar 

  24. Minamisawa H, Smith M-L, Siesjo BK (1990) The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann Neurol 28: 26–33

    PubMed  Google Scholar 

  25. Morse JK, Davis JN (1990) Regulation of ischemic hippocampal damage in the gerbil: adrenalectomy alters the rate of CA1 cell disappearance. Exp Neurol 110: 86–92

    PubMed  Google Scholar 

  26. Nakano M, Sugioka K, Naito I, Takekoshi S, Niki E (1987) Novel and potent biological antioxidants on membrane phospholipid peroxidation: 2-hydroxy estrone and 2-hydroxy estradiol. Biochem Biophys Res Commun 142: 919–924

    PubMed  Google Scholar 

  27. Nakano S, Kogure K, Fujikura H (1990) Ischemia-induced slowly progressive neuronal damage in the rat brain. Neuroscience 38: 115–124

    PubMed  Google Scholar 

  28. Niki E (1987) Antioxidants in relation to lipid peroxidation. Chem Phys Lipids 44: 227–253

    PubMed  Google Scholar 

  29. Ogata J, Fujishima M, Morotomi V, Omae T (1976) Cerebral infarction following bilateral carotid artery ligation in normotensive and spontaneously hypertensive rats: a pathological study. Stroke 7: 54–60

    PubMed  Google Scholar 

  30. Onodera H, Aoki H, Yae T, Kogure K (1990) Postischemic synaptic plasticity in the rat hippocampus after long-term survival: histochemical autoradiographic study. Neuroscience 38: 125–136

    PubMed  Google Scholar 

  31. Ordy JM, Thomas GJ, Volpe BT, Dunlap WP, Colombo PM (1989) An animal model of human-type memory loss based on aging, lesion, forebrain ischemia and drug studies with the rat. Neurobiol Aging 9: 667–683

    Google Scholar 

  32. Payan HM, Levine S, Strebel R (1965) Effects of cerebral ischemia in various strains of rats. PSEBM 120: 208–209

    Google Scholar 

  33. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10: 267–272

    PubMed  Google Scholar 

  34. Pulsinelli WA, Buchan AM (1989) The four-vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke 19: 913–914

    Google Scholar 

  35. Ridenour TR, Warner DS, Todd MM, McAllister AC (1992) Mild hypothermia reduces infarct size resulting from temporary but not permanent focal ischemia in rats. Stroke 23: 733–738

    PubMed  Google Scholar 

  36. Rothman SM, Olney JW (1986) Glutamate and pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19: 105–111

    PubMed  Google Scholar 

  37. Sapolsky RM (1985) A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults. J Neurosci 5: 1228–1232

    PubMed  Google Scholar 

  38. Smith M-L, Auer RN, Siesjo BK (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol 64: 319–332

    PubMed  Google Scholar 

  39. Stupfel M, Perramon A, Merat P, Faure J-M, Pesa VHD, Masse H (1979) Inter- and intraspecies genetic differences in survival to an acute hypoxic challenge in mice, rats, quails and chickens. Comp Biochem Physiol [A] 64: 317–323

    Google Scholar 

  40. Taft WC, Tennes-Rees KA, Blair RE, Clifton GL, DeLorenzo RJ (1988) Cerebral ischemia decreases endogenous calcium-dependent protein phosphorylation in gerbil brain. Brain Res 447: 159–163

    PubMed  Google Scholar 

  41. Warner DS, Zhou J, Ramani R, Todd MM (1991) Reversible focal ischemia in the rat: effects of halothane, isoflurane, and methohexital anesthesia. J Cereb Blood Flow Metab 11: 794–802

    PubMed  Google Scholar 

  42. Welsh FA, Sims RE, Harris VA (1990) Mild hypothermia prevents ischemic injury in gerbil hippocampus. J Cereb Blood Flow Metab 10: 557–563

    PubMed  Google Scholar 

  43. Wiernsperger N, Gygax P (1983) Incomplete cerebral ischemia in the rat: vascular and metabolic changes as measured by infrared transillumination in vivo. Adv Exp Biol Med 159: 5–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasdemiroglu, E. Mild hypothermia fails to protect late hippocampal neuronal loss following forebrain cerebral ischaemia in rats. Acta neurochir 138, 570–579 (1996). https://doi.org/10.1007/BF01411178

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01411178

Keywords

Navigation