Skip to main content
Log in

Discussion of craze formation and growth in amorphous polymers in terms of the multiplicity of glass transition at low temperatures

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A craze, the typical deformation zone in an amorphous polymer, can be divided into a precraze and a proper craze. A better understanding of the two corresponding formation processes is possible in terms of glass transition multiplicity.

The precraze is associated with the molecular mobility in the confined flow zone, which is part of the main transition. The proper craze corresponds to the mobility in the flow transition zone (terminal zone for shear). A negative pressure generated by nonuniaxial stress is considered to be important for the maintainance of the molecular mobility in these zones belowT g . The behavior of the zones at negative pressure and low temperatures T<Tg is considered using a pressure-temperature diagram. The fibril structure of crazes is discussed by a defect diffusion model for the proper glass transition; it is correlated with the sequential physical aging of the corresponding frozen structural defects. Typical mode lengths of the molecular mobilities in the different zones are compared with typical craze parameters. The structure of the craze material is considered to result from confined flow processes which cannot percolate because in the main transition the flow is confined by entanglements, and in the flow transition zone the flow is stopped by releasing the negative pressure due to crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kausch HH (ed) (1983) Crazing in Polymers. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  2. Narisawa I (1982) Festigkeit und Bruch von polymeren Materialien. (Japan), Omsha, Tokyo

    Google Scholar 

  3. Donth E (1981) Glasübergang, Akademie-Verlag, Berlin

    Google Scholar 

  4. Michler GH (1979) Cryst Res & Technol 14:1357

    Google Scholar 

  5. Michler GH (1985) Colloid Polym Sci 263:462

    Google Scholar 

  6. Michler GH (1986) Colloid Polym Sci 264:522

    Google Scholar 

  7. Michler GH (1977) Thesis A, Halle

  8. Boyer RF (1966) J Polym Sci C-14:3, and other papers in this volume; cf also Ferry JB (1970) Viscoelastic Properties of Polymers. Wiley, New York

    Google Scholar 

  9. Donth E, Schneider K (1985) Acta Polymerica 36:213

    Google Scholar 

  10. Donth E, Schneider K (1985) Acta Polymerica 36:273

    Google Scholar 

  11. Meischner C, Greiner B, Hauptmann P, Donth E (1986) Acta Polymerica 37:453

    Google Scholar 

  12. Newman S, Strella S (1965) J Appl Polym Sci 9:2297, Strella S (1966) J Polym Sci, A-2 4:527, (1968) Appl Polym Sympos 7:165

    Google Scholar 

  13. Donth E, Conrad R (1980) Acta Polymerica 31:47

    Google Scholar 

  14. Plazek DJ (1980) Polym J (Japan) 12:43, Plazek DL, Plazek DJ (1983) Makromolecules 16:469

    Google Scholar 

  15. Schröter K (1983) Thesis, Merseburg; Schneider K (1984) Thesis, Merseburg

  16. Michler GH, Gruber K (1976) Plaste u Kautschuk 23:346,496

    Google Scholar 

  17. Schönhals A, Donth E (1984) phys stat sol (b) 124:515

    Google Scholar 

  18. Pfandl W, Link G, Schwarzl FR (1984) Rheologica Acta 23:277

    Google Scholar 

  19. Donth E (1982) Acta Polymerica 33:685, 701; (1982) Polym Bull 7:417

    Google Scholar 

  20. Graessley WW (1982) Adv Polym Sci 47:67

    Google Scholar 

  21. Michler GH (1985) Acta Polymerica 36:285

    Google Scholar 

  22. Michler GH (1987) Thesis B, Halle

  23. Struik LCE (1978) Physical Aging in Amorphous Polymers and other Materials. Elsevier, Amsterdam

    Google Scholar 

  24. McCrum NG (1984) Polym Comm 25:2

    Google Scholar 

  25. Schönhals A, Donth E (1986) Acta Polymerica 37:475

    Google Scholar 

  26. Jäckle J (1986) Rep Progr Phys 49:171

    Google Scholar 

  27. Schneider K, Schönhals A, Donth E (1981) Acta Polymerica 32:471

    Google Scholar 

  28. Donth E (1982) J Non-Cryst Solids 53:325

    Google Scholar 

  29. Privalko VP, Demchenko SS, Lipatov YuS (1986) Vysokomol Soed A (russ) 28:1296

    Google Scholar 

  30. Döll W (1983) in [1] p 105

    Google Scholar 

  31. Schirrer R (1987) J Mater Sci 22:2289

    Google Scholar 

  32. McCrum NG, Read BE, Williams GW (1967) Anelastic and Dielectric Effects in Polymeric Solids. Wiley, London

    Google Scholar 

  33. Kramer EJ (1983) in [1] p 1

    Google Scholar 

  34. Kramer EJ (1984) Polym Eng Sci 24:761

    Google Scholar 

  35. Argon AS, Salama MM (1977) Philos Mag 36:1217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donth, E., Michler, G.H. Discussion of craze formation and growth in amorphous polymers in terms of the multiplicity of glass transition at low temperatures. Colloid & Polymer Sci 267, 557–567 (1989). https://doi.org/10.1007/BF01410431

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01410431

Key words

Navigation