Skip to main content
Log in

Temperature-dependent fracture mechanisms in ultra-high strength polyethylene fibers

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The influence of the temperature on the mechanical properties of gel-spun hot-drawn ultra-high molecular weight polyethylene fibers has been investigated.

From these experiments two different fracture mechanisms could be distinguished. The results indicate that above 20‡C a stress-induced orthorhombic-hexagonal phase transition is responsible for fiber failure. In the hexagonal or rotator phase the chains can easily slip past one another and fiber fracture is initiated by creep. Below 20‡C the phase transition cannot be introduced because the stress needed for the phase transition would exceed the covalent-bond strength in the polyethylene chain. The strength temperature data of the low temperature region was treated with Zhurkov's kinetic concept, leading to a bond-fracture activation energy of 160 kj/mol and an activation volume of 0.01 nm3. These values, together with the data from irradiation and shrinkage experiments, indicated that in the low temperature region fiber failure might be initiated by the fracture of trapped entanglements instead of that by overstressed, taut tie molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoogsteen W, Kormelink H, Eshuis G, ten Brinke G, Pennings AJ, J Mater Sci, to be published

  2. Savitkii AV, Gorshkova IA, Demicheva VP, Frolova IL, Shmikk GN (1984) Polym Sci USSR 26:2007

    Google Scholar 

  3. Dijkstra DJ, Pennings AJ (1987) Polym Bull 17:507

    Google Scholar 

  4. Dijkstra DJ, Pennings AJ (1988) Polym Bull 19:65

    Google Scholar 

  5. Pennings AJ, v.d.Hooft R, Postema AR, Hoogsteen W, ten Brinke G (1986) Polym Bull 16:167

    Google Scholar 

  6. Torfs JCM (1983) PhD thesis, University of Groningen, The Netherlands

    Google Scholar 

  7. Smith P, Chanzy HD, Rotzinger BP (1985) Polym Comm 26:258

    Google Scholar 

  8. de Gennes PG (1979) Scaling Concepts in Polymer Physics. Ch 3, Cornell University Press, Ithaca, New York

    Google Scholar 

  9. Graessley WW, Edwards SF (1981) Polymer 22:1329

    Google Scholar 

  10. Porter RS, Johnson JF (1966) Chem Rev 66:1

    Google Scholar 

  11. Postema AR, Doornkamp AT, Meijer JG, v d Vlekkert H, Pennings AJ (1986) Polym Bull 16:1

    Google Scholar 

  12. Smook J, Pennings AJ (1984) Colloid Polym Sci 262:712

    Google Scholar 

  13. Pennings AJ, Zwijnenburg A (1979) J Polym Sci Polym Phys Ed 17:1011

    Google Scholar 

  14. Smook J, Pennings AJ (1982) J Appl Polym Sci 27:2209

    Google Scholar 

  15. Postema AR, Hoogsteen W, Pennings AJ (1987) Polym Comm 28:148

    Google Scholar 

  16. Pennings AJ, Smook J, de Boer J, Gogolewski S, van Hutten PF, (1984) In: Seferis JC, Theocaris PS (eds) Interrelations between Processing and Properties of Polymeric Materials. Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  17. van Hurten PF, Koning CE, Pennings AJ (1985) J Mater Sci 20:1556

    Google Scholar 

  18. van Hutten PF, Koning CE, Pennings AJ (1983) Makromol Chem Rapid Comm 4:605

    Google Scholar 

  19. Zwijnenburg A, van Hutten PF, Pennings AJ, Chanzy HD (1978) Coll Polym Sci 256:729

    Google Scholar 

  20. van Hutten PF, Koning CE, Smook J, Pennings AJ (1983) Polym Comm 24:237

    Google Scholar 

  21. Pennings AJ, Smook J (1984) J Mater Sci 19:3443

    Google Scholar 

  22. Gulu F, Shadrake LG (1975) Proc R Soc Lond A346:305

    Google Scholar 

  23. Clough SB (1970) J Macromol Sci Phys B4(1):199

    Google Scholar 

  24. Strobl G, Ewen B, Fischer EW, Piesczek W (1974) J Chem Phys 61:5257

    Google Scholar 

  25. Ewen B, Fischer EW, Piesczek W, Strobl G (1974) J Chem Phys 61:5265

    Google Scholar 

  26. Grossmann HP, Pechhold WR (1986) Colloid Polym Sci 264:415

    Google Scholar 

  27. Pechhold W, Grossmann HP, von Soden W (1982) Colloid Polym Sci 260:248

    Google Scholar 

  28. Pechhold W, Blasenbrey S (1967) Kolloid-Zeitschrift 216:235

    Google Scholar 

  29. Bleha T, Gajdos J (1987) Colloid Polym Sci 265:574

    Google Scholar 

  30. Ungar G (1986) Macromolecules 19:1317

    Google Scholar 

  31. Ungar G, Keller A (1980) Polymer 21:1273

    Google Scholar 

  32. Vaughan AS, Ungar G, Bassen DC, Keller A (1985) Polymer 26:726

    Google Scholar 

  33. D'llario L, Pavel NV, Giglio E (1980) Polymer 21:973

    Google Scholar 

  34. Pennings AJ (1979) Makromol Chem, Suppl 2:99

    Google Scholar 

  35. Mueller A (1932) Proc R Soc Lond A 138:514

    Google Scholar 

  36. Bassett DC, Block S, Piermarini GJ (1974) J Apl Phys 45:4146

    Google Scholar 

  37. Kobayashi M, Morishita H, Shimomura M, Iguchi M (1987) Macromolecules 20

  38. Ward IM, Wilding MA, Brody H (1976) J Polym Sci, Polym Phys Ed 14:263

    Google Scholar 

  39. Brereton MG, Davies GR, Jakeways R, Smith T, Ward IM (1978) Polymer 19:17

    Google Scholar 

  40. Wunderlich B, Grebowicz J, Blumstein A (1985) (ed) Polymeric Liquid Crystals. Plenum Press, New York

    Google Scholar 

  41. Wunderlich B, Grebowicz J (1984) Adv Polym Sci 60/61:1

    Google Scholar 

  42. Smook J, Hamersma W, Pennings AJ (1984) J Mater Sci 19:1359

    Google Scholar 

  43. Zhurkov SN (1965) Intern J Fracture Mech 1:311

    Google Scholar 

  44. Zhurkov SN, Korsukov VE (1974) J Polym Sci Polym Phys Ed 12:385

    Google Scholar 

  45. He T (1986) Polymer 27:253

    Google Scholar 

  46. He T (1987) Makromol Chem 188:2489

    Google Scholar 

  47. Kausch HH, Becht J (1972) Kolloid-Z 250:1048

    Google Scholar 

  48. De Vries KL, Williams ML (1973) J Macromol Sci Phys B8(3-4):691

    Google Scholar 

  49. Kelly A, MacMillan NH (1986) Strong Solids, 3rd ed, Clarendon Press, Oxford, UK, p 375

    Google Scholar 

  50. Zhurkov SN, Zakrevskii VA, Korsukov VE, Kuksenko VS (1972) J Polym Sci, A-2, 10:1509

    Google Scholar 

  51. Verma GSP, Peterlin A (1970) J Macromol Sci B4:589

    Google Scholar 

  52. Verma GSP, Peterlin A (1970) Kolloid-Z 236:111

    Google Scholar 

  53. Becht J, Fischer H (1969) Kolloid-Z 229:167

    Google Scholar 

  54. Peterlin A (1965) J Polym Sci C9:61

    Google Scholar 

  55. Roylance DK, De Vries KL, Williams ML (1969) In: Pratt P (ed) Fracture. Chapman and Hall, London

    Google Scholar 

  56. Kausch HH, Becht J (1970) Rheol Acta 9:137

    Google Scholar 

  57. Kausch HH (1970) J Macromol Sci, Rev Macromol Chem C4(2):243

    Google Scholar 

  58. Station WO (1971) Polymer Sci Symp 32:219

    Google Scholar 

  59. Dijkstra DJ, Pennings AJ (1988) Polym Bull 19:481

    Google Scholar 

  60. Marikhin VA (1984) Makromol Chem, Suppl 7:147

    Google Scholar 

  61. Kusov AA, Vettegren VI (1980) Sov Phys Solid State 22:1962

    Google Scholar 

  62. Vettegren VI, Kusov AA, Korzhavin LN, Frenkel SYa (1982) Polymer Sci USSR 24:2241

    Google Scholar 

  63. Sawatari C, Matsuo M (1985) Colloid Polym Sci 263:783

    Google Scholar 

  64. de Boer J, Pennings AJ (1981) Polym Bull 5:317

    Google Scholar 

  65. Termonia Y, Smith P (1987) Polymer Comm 28:60

    Google Scholar 

  66. Lacher RC (1986) FSU-SCRI-87-20, Florida State University, Tallahassee, FL 32306-4052

    Google Scholar 

  67. Lacher RC, Bryant JL, Howard LN, Sumners DW (1986) Macromolecules 19:2639

    Google Scholar 

  68. Kausch HH (1987) Polymer Fracture, second edition. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dijkstra, D.J., Torfs, J.C.M. & Pennings, A.J. Temperature-dependent fracture mechanisms in ultra-high strength polyethylene fibers. Colloid & Polymer Sci 267, 866–875 (1989). https://doi.org/10.1007/BF01410334

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01410334

Key words

Navigation