Skip to main content

The sphere-rod transition of micelles of dodecyldimethylammonium bromide in aqueous NaBr solutions, and the effects of counterion binding on the micelle size, shape and structure

Abstract

Micelle size and shape of dodecyldimethylammonium bromide have been determined by measurement of light scattering from its aqueous NaBr solutions. In water and in the presence of NaBr up to 0.07 M, the Debye plots give straight lines with positive slopes, and spherical micelles having molecular weight less than 30 000 are formed. At higher NaBr concentrations, the Debye plots decrease with increasing micelle concentration, indicating the aggregation of the primary spherical micelles into larger secondary micelles. The molecular weight and the radius of gyration of the secondary micelles increase with increasing NaBr concentration, and the relation between molecular weight and radius of gyration suggests that they are rodlike and flexible. Linear logarithmic relations between micelle molecular weight and ionic strength hold for spherical and rodlike micelles, respectively, and the threshold concentration of NaBr for the sphere-rod transition is located at 0.07 M. The spherical micelle of dodecyldimethylammonium ions has a size more than 20 surfactant ions larger in NaBr solutions than in NaCl solutions, and their rodlike micelle has a shorter length in NaBr solutions than in NaCl solutions, when compared at an identical aggregation number, indicating 2 more surfactant ions in its cross-section.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ikeda S, Ozeki S, Tsundoda M (1980) J Colloid Interface Sci 73:27

    Google Scholar 

  2. 2.

    Hayashi S, Ikeda S (1980) J Phys Chem 84:744

    Google Scholar 

  3. 3.

    Ikeda S, Hayashi S, Imae T (1981) J Phys Chem 85:106

    Google Scholar 

  4. 4.

    Ozeki S, Ikeda S (1980) J Colloid Interface Sci 77:219

    Google Scholar 

  5. 5.

    Ozeki S, Ikeda S (1981) Bull Chem Soc Jpn 54:522

    Google Scholar 

  6. 6.

    Ozeki S, Ikeda S (1982) J Colloid Interface Sci 87:424

    Google Scholar 

  7. 7.

    Anacker EW, Geer RD (1971) J Colloid Interface Sci 35:441

    Google Scholar 

  8. 8.

    Geer RD, Eylar EH, Anacker EW (1971) J Phys Chem 75:369

    Google Scholar 

  9. 9.

    Anacker EW, Ghose HM (1968) J Amer Chem Soc 90:3161

    Google Scholar 

  10. 10.

    Elworthy PH Macfarlane CB (1963) J Chem Soc 907

  11. 11.

    Kushner LM, Hubbard WD (1955) J Colloid Sci 10:428

    Google Scholar 

  12. 12.

    Mysels KJ, Princen LH (1959) J Phys Chem 63:1696

    Google Scholar 

  13. 13.

    Anacker EW, Rush RM, Johnson JS (1964) J Phys Chem 68:81

    Google Scholar 

  14. 14.

    Emerson M, Holtzer A (1967) J Phys Chem 71:1898

    PubMed  Google Scholar 

  15. 15.

    Huisman HF (1964) Proc Kon Ned Akad Wet, Ser B 67:388

    Google Scholar 

  16. 16.

    Williams RJ, Phillips JN, Mysels KJ (1955) Trans Faraday Soc 51:728

    Google Scholar 

  17. 17.

    Prins W, Hermans JJ (1956) Proc Kon Ned Akad Wet, Ser B 59:162

    Google Scholar 

  18. 18.

    Princen LH, Mysels KJ (1957) J Colloid Sci 12:594

    Google Scholar 

  19. 19.

    Vrij A, Overbeek JTG (1962) J Colloid Sci 17:570

    Google Scholar 

  20. 20.

    Anacker EW, Ghose HM (1963) J Phys Chem 67:1713

    Google Scholar 

  21. 21.

    Ford WPJ, Ottewill RH, Parreira HC (1966)J Colloid Interface Sci 21:522

    Google Scholar 

  22. 22.

    Ozeki S, Ikeda S (1980) Bull Chem Soc Jpn 53:1832

    Google Scholar 

  23. 23.

    Phillips JN (1955) Trans Faraday Soc 51:561

    Google Scholar 

  24. 24.

    Mukerjee (1967) Advan Colloid Interface Sci 1:241

    Google Scholar 

  25. 25.

    Tanford C (1979) The Hydrophobic Effect, 2nd Ed, Chap 6 and 7, John Wiley & Sons, New York

    Google Scholar 

  26. 26.

    Anacker EW (ed) (1979) Mittal KL, Solution Chemistry of Surfactant, Vol 1, p 247, Plenum, New York & London

    Google Scholar 

  27. 27.

    Barry BW, Russell GFJ (1972) J Colloid Interface Sci 40:174

    Google Scholar 

  28. 28.

    Trap HJL, Hermans JJ (1955) Proc Kon Ned Akad Wet, Ser B 58:97

    Google Scholar 

  29. 29.

    Tartar HV (1955) J Phys Chem 59:1195

    Google Scholar 

  30. 30.

    Tartar HV (1959) J Colloid Sci 14:115

    Google Scholar 

  31. 31.

    Tanford C (1972) J Phys Chem 76:3020

    Google Scholar 

  32. 32.

    Israelachivili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc Faraday Trans, II 72:1525

    Google Scholar 

  33. 33.

    Leibner JE, Jacobus J (1977) J Phys Chem 81:130

    Google Scholar 

  34. 34.

    Robson RJ, Dennis EA (1977) J Phys Chem 81:1075

    Google Scholar 

  35. 35.

    Herrmann KW (1964) J Phys Chem 68:154

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ozeki, S., Ikeda, S. The sphere-rod transition of micelles of dodecyldimethylammonium bromide in aqueous NaBr solutions, and the effects of counterion binding on the micelle size, shape and structure. Colloid & Polymer Sci 262, 409–417 (1984). https://doi.org/10.1007/BF01410261

Download citation

Key words

  • dodecyldimethylammonium bromide
  • rodlike micelle
  • light scattering
  • counter ion binding
  • micelle size