Advertisement

Numerische Mathematik

, Volume 44, Issue 2, pp 247–259 | Cite as

Contractivity of locally one-dimensional splitting methods

  • J. G. Verwer
Article

Summary

The aim of this paper is to study contractivity properties of two locally one-dimensional splitting methods for non-linear, multi-space dimensional parabolic partial differential equations. The term contractivity means that perturbations shall not propagate in the course of the time integration process. By relating the locally one-dimensional methods with contractive integration formulas for ordinary differential systems it can be shown that the splitting methods define contractive numerical solutions for a large class of non-linear parabolic problems without restrictions on the size of the time step.

Subject Classifications

AMS (MOS): 65L05 65M05 65M20 CR: 5.17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burrage, K., Butcher, J.C.: Stability criteria for implicit Runge-Kutta methods. SIAM J. Numer. Anal.16, 46–57 (1979)Google Scholar
  2. 2.
    Ciarlet, P.G., Schultz, M.H., Varga, R.S.: Numerical methods of high order accuracy for nonlinear boundary value problems V: Monotone Operators. Numer. Math.13, 51–77 (1969)Google Scholar
  3. 3.
    Crouzeix, M.: Sur laB-stabilité des méthodes de Runge-Kutta. Numer. Math.32, 75–82 (1979)Google Scholar
  4. 4.
    Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Trans. Roy. Inst. Tech. No. 130, Stockholm 1959Google Scholar
  5. 5.
    Dahlquist, G.: Error analysis for a class of methods for stiff non-linear initial value problems. In: Lecture Notes in Mathematics 506. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  6. 6.
    Desoer, C.A., Haneda, H.: The measure of a matrix as a tool to analyze computer algorithms for circuit analysis. IEEE trans. on Circuit Theory19, 480–486 (1972)Google Scholar
  7. 7.
    Friedman, A.: Partial differential equations of parabolic type. Englewood Cliffs, N.J.: Prentice hall Inc. 1964Google Scholar
  8. 8.
    Houwen, P.J., van der, Verwer, J.G.: One-step splitting methods for semi-discrete parabolic equations. Computing22, 291–309 (1979)Google Scholar
  9. 9.
    Hundsdorfer, W.H.: Non-linear stability analysis for a simple Rosenbrock method. Report 81-31, University of Leiden 1981Google Scholar
  10. 10.
    Kellogg, R.B.: An alternating direction method for operator equations. J. Soc. Ind. Appl. Math.12, 848–854 (1964)Google Scholar
  11. 11.
    Marchuk, G.I.: On the theory of the splitting-up method. In: Numerical Solution of Partial Differential Equations-II (B. Hubbard, ed.). New York, London:Academic Press 1971Google Scholar
  12. 12.
    Sandberg, I.W., Shichman, H.: Numerical integration of systems of stiff non-linear differential equations. Bell Systems Tech. J.47, 511–527 (1968)Google Scholar
  13. 13.
    Spijker, M.N.: Contractivity of Runge-Kutta methods, In: Numerical methods for solving stiff initial value problems. Bericht Nr. 9 der Institut für Geometrie und Praktische Mathematik der RWTH Aachen (G. Dahlquist, R. Jeltsch, eds.) 1981Google Scholar
  14. 14.
    Spijker, M.N.: Stability in the numerical solution of stiff initial value problem. Nieuw Arch. Wisk.30, 235–246 (1982)Google Scholar
  15. 15.
    Ström, T.: On logarithmic norms. SIAM J. Numer. Anal.12, 741–753 (1975)Google Scholar
  16. 16.
    Vanselow, R.: Stabilität und Fehleruntersuchungen bei numerischen Verfahren zur Lösung steifer nichtlinearer Anfangswertprobleme. Diplomarbeit Sektion Mathematik TU-Dresden 1979Google Scholar
  17. 17.
    Varga, R.S.: Matrix iterative analysis. Englewood Cliffs N.J.: Prentice Hall Inc. 1962Google Scholar
  18. 18.
    Verwer, J.G.: On the practical value of the notion of BN-stability. BIT21, 355–361 (1981)Google Scholar
  19. 19.
    Yanenko, N.N.: The method of fractional steps. Berlin, Heidelberg, New York: Springer 1971Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. G. Verwer
    • 1
  1. 1.Mathematical CentreAmsterdamThe Netherlands

Personalised recommendations