Advertisement

Numerische Mathematik

, Volume 44, Issue 2, pp 219–222 | Cite as

On the stability of bilinear-constant velocity-pressure finite elements

  • J. M. Boland
  • R. A. Nicolaides
Article

Summary

An analysis of the Babuška stability of bilinear/constant finite element pairs for viscous flow calculations is given. An unstable mode not of the checkerboard type is given for which the stability constant turns out to beO(h). Thus, the indicated spaces are not stable in general for numerical calculation.

Subject Classifications

AMS(MOS): 65N30 CR: 5.17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov Galerkin Formulations for convection dominated flows. Comput. Methods Appl. Mech. Engrg.32, 199–259 (1982)Google Scholar
  2. 2.
    Sani, R.L., Gresho, P., Lee, R.: On the spurious pressures generated by certain GFEM solutions. Proc. Third Internat. Conf. on Finite Elements in flow problems. Bannff, Canada 1980Google Scholar
  3. 3.
    Johnson, C., Pitkäranta, J.: Analysis of some mixed finite element methods related to reduced integration. Technical Report, Chalmers University of Technology, 1980Google Scholar
  4. 4.
    Gunzburger, M.D., Peterson, J., Nicolaides, R.: On conforming mixed finite element methods for incompressible viscous flow problems. Comput. Math. Appl.8, 67–179 (1982)Google Scholar
  5. 5.
    Boland, J.M., Nicolaides, R.A.: Stability of finite elements under divergence constraints. SIAM J. Numer. Anal.20, 722–731 (1983)Google Scholar
  6. 6.
    Girault, V., Raviart, P.-A.: Finite element approximations to the Navier-Stokes equations. Lecture Notes in Mathematics, 749. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  7. 7.
    Boland, J.M., Nicolaides, R.A.: Stable and semi-stable low order finite elements for viscous flows. SIAM J. Numer. Anal. (to appear)Google Scholar
  8. 8.
    Arnold, D.N., Babuška, I., Osborn, J.: Finite Element Methods: Principles for their selection. Laboratory for Numerical Analysis Technical Note BN-997, University of MarylandGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. M. Boland
    • 1
  • R. A. Nicolaides
    • 2
  1. 1.Carnegie-Mellon UniversityPittsburghUSA
  2. 2.University of ConnecticutStorrsUSA

Personalised recommendations