Advertisement

Numerische Mathematik

, Volume 44, Issue 2, pp 153–168 | Cite as

A finite element — Capacitance method for elliptic problems on regions partitioned into subregions

  • M. Dryja
Article

Summary

A method is given for the solution of linear equations arising in the finite element method applied to a general elliptic problem. This method reduces the original problem to several subproblems (of the same form) considered on subregions, and an auxiliary problem. Very efficient iterative methods with the preconditioning operator and using FFT are developed for the auxiliary problem.

Subject Classifications

AMS(MOS): 65N20, 65F05, 65F10 CR: 5.17, 5.14 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreev, V.B.: Equivalent norms of the difference functions fromW 21/2(γ). In: The study on theory of the difference schemes for elliptic and parabolic equations. (V.B. Andreev, ed.), pp. 4–39. University of Moscow: Computing Center 1973Google Scholar
  2. 2.
    Bank, R.E., Rose, D.J.: Marching algorithms for elliptic boundary value problems. I. The constant coefficient case. SIAM J. Numer. Anal.14, 792–829 (1977)Google Scholar
  3. 3.
    Bunch, J.R., Rose, D.J.: Partitioning tearning and modification on sparce linear systems. J. Math. Anal. Appl.48, 574–593 (1974)Google Scholar
  4. 4.
    Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland: Amsterdam-New York 1977Google Scholar
  5. 5.
    Concus, P., Golub, G.H., O'Leary, D.P.: A generalized conjugate gradient method for the numerical solution of elliptic PDE. In: Sparce matrix computations (J.R. Bunch, D.J. Rose, eds.), pp. 309–332. New York: Academic Press (1976)Google Scholar
  6. 6.
    Cooley, J.W., Lewis, P.A.W., Welch, P.D.: The fast Fourier transform algorithm: Programming consideration in the calculation of sine, cosine and Laplace transform. J. Sound Vibration12, 315–337 (1970)Google Scholar
  7. 7.
    Dryja, M.: A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math.39, 51–64 (1982)Google Scholar
  8. 8.
    Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric system of linear equations. Research Report #209, Yale University 1981Google Scholar
  9. 9.
    George, J.A.: An automatic one-way dissection. SIAM J. Numer. Anal.17, 740–754 (1980)Google Scholar
  10. 10.
    Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications, Vol. I. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  11. 11.
    Samarskii, A.A., Nikolaev, E.S.: Methods of solving the difference equations. Moscow: Mir 1978 (in Russian)Google Scholar
  12. 12.
    Proskurowski, W., Widlund, O.: On the numerical solution of Helmholtz equation by the capacitance matrix method. Math. Comput.30, 433–468 (1976)Google Scholar
  13. 13.
    Widlund, O.: Iterative methods for the solution of elliptic problems on regions partitioned into substructures and the biharmonic Dirichlet problem. Proceedings of the Sixth International Conference on Computing Methods in Applied and Engineering held at Versailles, France, December 12–16, 1983Google Scholar
  14. 14.
    Yakoblev, G.N.: Boundary properties of the functions from classW p(1) on a region with angles points. Doklady Academy of Sciences of U.S.R.R.140, 73–76 (1961)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. Dryja
    • 1
  1. 1.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations