Skip to main content
Log in

Stationary and almost stationary iterative (k, l)-step methods for linear and nonlinear systems of equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We first discuss the solution of a fixed point equationxΦx of a Fréchet differentiable self-mapping Φ by iterative methods of the general form

$$x_m : = \left[ {\Phi \left( {\sum\limits_{i = 0}^{m - 1} {x_i \gamma _{i,m - 1} } } \right) - \sum\limits_{j = 0}^{m - 1} {x_j \beta _{j,m} } } \right]\frac{1}{{\beta _{m,m} }},m = 1,2, \ldots ,$$

defined by two infinite nonsingular upper triangular matricesB=(β j, m ) andC=(γ j, m ) with column sums 1. We show that two such methods, defined byB, C and\(\tilde B,\tilde C\), respectively, are in a certain sense equivalent if and only if\(C^{ - 1} B = \tilde C^{ - 1} \tilde B\). In particular,\(\hat B: = C^{ - 1} \) and the unit matrix (replacingC) define an equivalent so-called semiiterative method. We introduce (k, l)-step methods as those whereB andC have upper bandwidthk andl−1, respectively. They require storing max {k, l} previous iterates only. For stationary methodsB andC have Toeplitz structure except for their first row, which is chosen such that the column sum condition holds. An Euler method, which may require to store all iterates, is equivalent to a (stationary) (k, l)-step method if and only if the underlying conformal mapg is a rational function of the formg(w)=w(μ 0+...+μ k −k)/ (v 0+...+v l−1 w +1). By choosingg withg(1)=1 such that for some ρ<1 it maps |w|>ρ onto the exterior of some continuumS known to contain the eigen values of the Fréchet derivative of Φ, one obtains a feasible procedure for designing a locally converging stationary (k, l)-step method custom-made for a set of problems.

In the case Φx≔Tx+d, with a linear operatorT, where one wants to solve a linear system of equations, we show that the residual polynomials of a stationary semiiterative method are generalized Faber polynomials with respect to a particular weight function. Using another weight function leads to what we call almost stationary methods. (The classical Chebyshev iteration is an example of such a method.) We define equivalent almost stationary (k, l)-step methods and give a corresponding convergence result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bittner, L.: Über ein mehrstufiges Iterationsverfahren zur Lösung von linearen Gleichungen. Numer. Math.6, 161–180 (1964)

    Google Scholar 

  2. Eiermann, M., Li, X., Varga, R.S.: On hybrid semiiterative methods. SIAM J. Numer. Anal. (to appear)

  3. Eiermann, M., Niethammer, W.: On the construction of semiiterative methods. SIAM J. Numer. Anal.20, 1153–1160 (1983)

    Google Scholar 

  4. Eiermann, M., Niethammer, W., Varga, R.S.: A study of semiiterative methods for nonsymmetric systems of linear equations. Numer. Math.47, 505–533 (1985)

    Google Scholar 

  5. Engeli, M., Ginsburg, T., Rutishauser, H., Stiefel, E.: Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary value problems. Mitt. Inst. Angew. Math. ETH Zürich, No. 8. Basel: Birkhäuser 1959

    Google Scholar 

  6. Faddeev, D.K., Faddeeva, V.N.: Computational methods of linear algebra, 1st Ed. San Francisco: Freeman 1963

    Google Scholar 

  7. Gekeler, E.: Über ein mehrstufiges Iterationsverfahren und die Lösung der Hammersteinschen Gleichung. Numer. Math.19, 351–360 (1972)

    Google Scholar 

  8. Gutknecht, M.H.: An iterative method for solving linear equations based on minimum norm Pick-Nevanlinna interpolation. In: Chui, C.K., Schumaker, L.L., Ward, J.D. (eds.) Approximation theory V, pp. 371–374. New York: Academic Press 1986

    Google Scholar 

  9. Gutknecht, M.H.: Numerical conformal mapping methods based on function conjugation. J. Comput. Appl. Math.14, 31–77 (1986)

    Google Scholar 

  10. Gutknecht, M.H., Kaiser, A.: Iterativek-step methods for computing possibly repulsive fixed points in Banach spaces. J. Math. Anal. Appl.125, 104–123 (1987)

    Google Scholar 

  11. Gutknecht, M.H., Niethammer, W., Varga, R.S.:k-step iterative methods for solving nonlinear systems of equations. Numer. Math.48, 699–712 (1986)

    Google Scholar 

  12. Kitchen, J.W. Jr.: Concerning the convergence of iterates to fixed points. Studia Math.27, 247–249 (1966)

    Google Scholar 

  13. Mann, W.R.: Averaging to improve convergence in iterative processes. In: M.Z. Nashed (ed.) Functional analysis methods in numerical analysis, pp. 169–179. Berlin Heidelberg New York: Springer 1979

    Google Scholar 

  14. Mann, W.R.: Mean value methods in iteration. Proc. Amer. Math. Soc.4, 506–510 (1953)

    Google Scholar 

  15. Niethammer, W.: Iterationsverfahren und allgemeine Euler-Verfahren. Math. Z.102, 288–317 (1967)

    Google Scholar 

  16. Niethammer, W., Schempp, W.: On the construction of iteration methods for linear equations in Banach spaces by summation methods. Aequationes Math.5, 273–284 (1970)

    Google Scholar 

  17. Niethammer, W., Varga, R.S.: The analysis ofk-step iterative methods for linear systems from summability theory. Numer. Math.41, 177–206 (1983)

    Google Scholar 

  18. Opitz, G.: Steigungsmatrizen. Z. Ang. Math. Mech.44, T52-T54 (1964)

    Google Scholar 

  19. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. 1st Ed. New York: Academic Press 1970

    Google Scholar 

  20. Parsons, B.N.: Generalk-part stationary iterative solutions to linear systems. SIAM J. Numer. Anal.24, 188–198 (1987)

    Google Scholar 

  21. Schempp, W.: Iterative solution of linear operator equations in Hilbert space and optimal Euler methods. Arch. Math.21, 390–395 (1970)

    Google Scholar 

  22. Smirnov, V.I., Lebedev, N.A.: Functions of a complex variable 1st Ed. Cambridge: The M.I.T. Press 1968

    Google Scholar 

  23. Toeplitz, O.: Über allgemeine Mittelbildungen. Prace Mat.-Fiz.22, 113–119 (1911)

    Google Scholar 

  24. Trefethen, L.N.: Rational Chebyshev approximation on the unit disk. Numer. Math.37, 297–320 (1981)

    Google Scholar 

  25. Varga, R.S.: Matrix iterative analysis. Englewood Cliffs, N.J.: Prentice-Hall 1962

    Google Scholar 

  26. Warner, D.D.: Hermite interpolation with rational functions. PhD thesis, University of California at San Diego 1974

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutknecht, M.H. Stationary and almost stationary iterative (k, l)-step methods for linear and nonlinear systems of equations. Numer. Math. 56, 179–213 (1989). https://doi.org/10.1007/BF01409784

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01409784

Subject Classifications

Navigation