Skip to main content
Log in

A conjugate gradient method and a multigrid algorithm for Morley s finite element approximation of the biharmonic equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The numerical solution of the linear equations arising from Morley's nonconforming displacement method is studied. A suitable preconditioning for the conjugate gradient method is described. Furthermore, the nonconformity of the discretization necessitates some non-standard ingredients of multigrid algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates. M2AN19, 7–32 (1985)

    Google Scholar 

  2. Axelsson, O., Barker, V.: Finite element solution of boundary value problems: Theory and computation. New York: Academic Press 1984

    Google Scholar 

  3. Babuška, J., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput.35, 1039–1062 (1980)

    Google Scholar 

  4. Bank, R., Dupont, T.: An optimal order process for solving finite element equations. Math. Comput.36, 35–51 (1981)

    Google Scholar 

  5. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci.2, 556–581 (1980)

    Google Scholar 

  6. Bourgat, J.F.: Numerical study of a dual iterative method for solving a finite element approximation of the biharmonic equation. Comput. Methods Appl. Mech. Eng.9, 203–218 (1976)

    Google Scholar 

  7. Braess, D., Hackbusch, W.: A new convergence proof for the multigrid method including theV-cycle. SIAM J. Numer. Anal.20, 967–975 (1983)

    Google Scholar 

  8. Braess, D., Peisker, P.: On the numerical solution of the biharmonic equation and the role of squaring matrices for preconditioning. IMA J. Numer. Anal.6, 393–404 (1986).

    Google Scholar 

  9. Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North Holland 1978

    Google Scholar 

  10. Hackbusch, W.: Multi-grid methods and applications. Berlin-Heidelberg-New York-Tokyo: Springer 1985

    Google Scholar 

  11. Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. RAIRO Anal. Numér.9, 9–53 (1975)

    Google Scholar 

  12. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications 1. Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  13. Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aero. Quart.19, 149–169 (1968)

    Google Scholar 

  14. Rannacher, R.: On nonconforming and mixed finite element methods for plate bending problems. The linear case. RAIRO Anal. Numér.13, 369–387 (1979)

    Google Scholar 

  15. Stoer, J.: Solution of large systems of equations by conjugate type methods. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 540–565, Berlin-Heidelberg-New York: Springer 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peisker, P., Braess, D. A conjugate gradient method and a multigrid algorithm for Morley s finite element approximation of the biharmonic equation. Numer. Math. 50, 567–586 (1987). https://doi.org/10.1007/BF01408577

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01408577

Subject Classifications

Navigation