Skip to main content
Log in

Energy loss spectra of xenon and krypton and their analysis by energy-dependent multichannel quantum defect theory

  • Published:
Zeitschrift für Physik A Atoms and Nuclei

Abstract

Oscillator strengths of xenon and krypton for transitions from the ground state to the optically allowed states forming the five resonance series were measured by means of high energy electron spectroscopy (HEEIS). The rather irregular behaviour of these oscillator strengths is analyzed with the aid of the known atomic level energies by means of the energy-dependent quantum defect theory. With the parameters obtained by the analysis of the energy loss measurement autoionized lines shapes and the asymmetry parameter for the photoionizationβ of Kr and Xe were calculated in excellent agreement with experimental data from the literature. The comparison of the parameters and their energy dependence for Kr and Xe gives indication that some properties change rather rapidly from Kr to Xe. The theory enables also to predict missing term levels of Kr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, K.T.: Phys. Rev. A4, 579 (1971)

    Google Scholar 

  2. Fano, U.: Phys. Rev. A2, 353 (1970);

    Google Scholar 

  3. Fano, U.: J. Opt. Soc. Amer.65, 979 (1975)

    Google Scholar 

  4. Geiger, J.: Z. Physik A276, 219 (1976). Two typographical errors should be corrected: The first autoionizeds′ line is to be designated by 8s′ andD′ 4 should be read −0.59

    Google Scholar 

  5. Geiger, J.: Proc. ¯N Int. Conf. on VUV Rad. Phys., Hamburg, p. 28, Braunschweig: Pergamon-Vieweg 1974

    Google Scholar 

  6. Saile, V., Gürtler, P., Koch, E.E., Kozevnikov, A., Skibowski, M., Steinmann, W.: Applied Optics15, 2559 (1976) and unpublished work; Saile, V. Thesis, Universität München (1976). The author expresses his appreciation to Dr. E.E. Koch for allowing the use of the data before publication

    Google Scholar 

  7. Schmoranzer, H.: Electron Microscopy 1968, Tipographia Poliglotta, Vaticana, Roma (1968), Vol. 1, p. 333

    Google Scholar 

  8. Geiger, J., Schmoranzer, H.: J. Mol. Spectroscopy32, 39 (1969)

    Google Scholar 

  9. Nicolai, R.: Z. Physik228, 16 (1969)

    Google Scholar 

  10. Boersch, H., Geiger, J., Schröder, B.: Abh. Deutsche Akad. Wiss. Berlin, Klasse für Math., Phys., Techn.1967, Nr. 1, p. 15

  11. Bethe, H.: Ann. Phys.5, 325 (1930);

    Google Scholar 

  12. Fano, U.: Phys. Rev.103, 1202 (1956)

    Google Scholar 

  13. Geiger, J.: Z. Physik177, 138 (1964)

    Google Scholar 

  14. Geiger, J.: Thesis, Fakultät für Allg. Ing. Wiss., Techn. Univ., Berlin (1962)

    Google Scholar 

  15. Lu, K.T., Fano, U.: Phys. Rev. A2, 81 (1970)

    Google Scholar 

  16. Seaton, M.J.: Proc. Phys. Soc, London88, 801 (1966)

    Google Scholar 

  17. Starace, A.F.: J. Phys. B: Atom. Molec. Phys.6, 76 (1973)

    Google Scholar 

  18. Lee, C.M., Lu, K.T.: Phys. Rev. A8, 1241 (1973)

    Google Scholar 

  19. Lee, C.M.: Phys. Rev. A10, 584 (1974)

    Google Scholar 

  20. Moore, C.E.: Atomic Energy Levels, NBS Circular No. 467, Vol. III (1958)

  21. Delâge, A., Carette, J.D.: Phys. Rev. A14, 1345 (1976)

    Google Scholar 

  22. Huffman, R.E., Tanaka, Y., Larrabee, J.C.: J. Chem. Phys.39, 902 (1963)

    Google Scholar 

  23. Sommerfeld, A.: Atombau und Spektrallinien (1923), p. 448

  24. Sugiura, Y.: J. Phys. et le Radium8, 113 (1927)

    Google Scholar 

  25. Comes, F.J., Sälzer, H.G., Schumpe, G.: Z. Naturforschung23a, 137 (1968)

    Google Scholar 

  26. Cooper, J., Zare, R.N., in: Lectures in Theoretical Physics, Vol. XI, p. 317 New York: Gordon and Breach 1969

    Google Scholar 

  27. Dill, D.: Phys. Rev. A7, 1976 (1973)

    Google Scholar 

  28. Samson, J.A.R., Gardner, J.L.: Phys. Rev. Letters31, 1327 (1973)

    Google Scholar 

  29. Geiger, J.: Phys. Letters33A, 351 (1970). Note, that in the present report according to the more recent measurement for Kr the oscillator strength ratiof(5s′)/f(5s)=0.89 proved slightly smaller

    Google Scholar 

  30. Huffman, R.E., Tanaka, Y., Larrabee, J.C.: Applied Optics2, 947 (1963)

    Google Scholar 

  31. Metzger, P.H., Cook, G.R.: J. Opt. Soc. America55, 516 (1965)

    Google Scholar 

  32. Carter, V.L., Hudson, R.D.: J. Opt. Soc. America63, 733 (1973)

    Google Scholar 

  33. Stickel, W.: Diplomarbeit Techn. Univ., Berlin 1964

  34. Kim, Y., Desclaux, J.P.: Oscillator Strengths for the Resonance Transitions of Rare Gases, Report ANL-8060 (1973) p. 4

  35. Fano, U.: Comments At. Molec. Phys.2, 30 (1970)

    Google Scholar 

  36. Samson, J.A.R., Cairns, R.B.: Phys. Rev. A8, 1241 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Thanks are due to Prof. H. Ehrhardt and his group for an extended use of their computer. Several discussions with Prof. H. Krüger concerning the theoretical background of this paper are also greatfully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, J. Energy loss spectra of xenon and krypton and their analysis by energy-dependent multichannel quantum defect theory. Z Physik A 282, 129–141 (1977). https://doi.org/10.1007/BF01408155

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01408155

Keywords

Navigation