Skip to main content
Log in

Comments on “Seed germination as a thermobiological problem” (A reply)

  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Summary

The criticisms formulated by J. E. Philipp against my former article [Labouriau LG (1978) Radiat Environ Biophys 15: 345–366] are analysed and answered, in connection with1. the applicability of the activation-energy approach to the kinetics of seed germination,2. the use of curvilinearversus rectilinear Arrhenius plots,3. with the interpretation of3.1. the extreme temperature cardinal points,3.2. of the thermodynamic parameters of the activation of germination, and3.3. of the informational entropy of the distributions of isothermal germination times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Amer FA, Williams WT (1957) Leaf-area growth inPelargonium zonale. Ann Bot (London) 21: 339–342

    Google Scholar 

  • Bagnall DJ, Wolfe JA (1978) Chilling sensitivity in plants: do the activation energies of growth processes show an abrupt change at a critical temperature? J Exp Bot 29: 1231–1242

    Google Scholar 

  • Buchanan RE, Fulmer EV (1930) Physiology and biochemistry of bacteria, vol 2. Baillère, Tindall & Cox, London

    Google Scholar 

  • Causton DR, Venus JC (1981) The biometry of plant growth. Edward Arnold, London

    Google Scholar 

  • Chase AM (1950) Studies on cell enzyme systems. IV. The kinetics of heat inactivation ofCypridina luciferase. J Gen Physiol 33: 535–546

    Google Scholar 

  • Critchley C, Smillie RM, Patterson BD (1978) Effect of temperature on photoreductive activity of chloroplasts from passionfruit species of different chilling sensitivity. Aust J Plant Physiol 5: 443–448

    Google Scholar 

  • Crozier WJ (1924) On the possibility of identifying chemical processes in living matter. Proc Natl Acad Sci USA 10: 461–464

    Google Scholar 

  • Farrel J, Rose AH (1967) Temperature effects on microorganisms. Ann Rev Microbiol 21:101–120

    Google Scholar 

  • Glastone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New York London

    Google Scholar 

  • Gould BS, Sizer IW (1938) The mechanism of bacterial dehydrogenase activity ofEscherichia coli as a function of temperature. J Biol Chem 124: 269–279

    Google Scholar 

  • Hadidian Z, Hoagland H (1939) Chemical pacemakers - Part II. Activation energies of chemical pacemakers. J Gen Physiol 23:81–99

    Google Scholar 

  • Hearon JZ (1952) Rate behavior of metabolic systems. Physiol Rev 32: 494–523

    Google Scholar 

  • Hoagland H (1935) Pacemakers in relation to aspects of behavior. McMillan, New York

    Google Scholar 

  • Inniss WE (1975) Interaction of temperature and psychrophilic microorganisms. Annu Rev Microbiol 29: 445–465

    Google Scholar 

  • Johnson FH, Eyring H, Polissar MJ (1954) Kinetics basis of molecular biology. John Wiley, New York London

    Google Scholar 

  • Johnson FH, Eyring H, Stover BJ (1974) The theory of rate processes in biology and medicine. John Wiley, New York London

    Google Scholar 

  • Kistiakowsky GB, Lumry RL (1949) Anomalous temperature effects in hydrolysis of urea by urease. J Am Chem Soc 71: 2006–2013

    Google Scholar 

  • Koffler H, Johnson FH, Wilson PW (1947) Combined influence of temperature and urethane on the respiration ofRhizobium. J Am Chem Soc 69: 1113–1117

    Google Scholar 

  • Kunitz M (1948) The kinetics and thermodynamics of crystalline soybean trypsin inhibitor. J Gen Physiol 32: 241–263

    Google Scholar 

  • Labouriau LG (1970) On the physiology of seed germination inVicia graminea Sm. I. An Acad Brasil Cienc 42:235–262

    Google Scholar 

  • Labouriau LG (1972) On the physiology of seed germination inVicia graminea Sm. II. An analysis of the temperature dependence of the seed germination rate. An Acad Brasil Cienc 44: 477–534

    Google Scholar 

  • Labouriau LG (1977) Shift of the maximum temperature of germination ofVicia graminea seeds following imbibition of deuterium oxide. J Thermal Biol 2: 111–114

    Google Scholar 

  • Labouriau LG (1978) Seed germination as a thermobiological problem. Radiat Environ Biophys 15: 345–366

    Google Scholar 

  • Labouriau LG (1980) Effects of deuterium oxide on the lower temperature limit of seed germination. J Thermal Biol 5: 113–117

    Google Scholar 

  • Labouriau LG, Pacheco A (1978) On the frequency of isothermal germination of seeds ofDolichos biflorus L. Plant Cell Physiol 19: 507–512

    Google Scholar 

  • Labouriau LG, Pacheco A (1979) Isothermal germination rates in seeds ofDolichos biflorus L. Bol Soc Venez Ci Nat 34: 73–112

    Google Scholar 

  • Labouriau LG, Valadares MB (1976) On the germination of seeds ofCalotropis procera (Ait) Ait. F. An Acad Bras Cienc 48: 263–284

    Google Scholar 

  • Laidler KJ (1965) Chemical kinetics, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Levy HM, Sharon N, Koshland DE (1959) Purified muscle proteins and the walking rate of ants. Proc Natl Acad Sci USA 45: 785–791

    Google Scholar 

  • Lewis GN, Randall M (1961) Thermodynamics, 2nd edn. McGraw-Hill, New York London

    Google Scholar 

  • Lineweaver H, Burk D, Horner CK (1932) The temperature characteristic of respiration ofAzotobacter. J Gen Physiol 15: 497–505

    Google Scholar 

  • Medawar PB (1940) Growth, growth energy, and ageing of the chicken's heart. Proc R Soc London Ser B 129: 332–355

    Google Scholar 

  • Nolan WG, Smillie RM (1976) Multitemperature effects on Hill reaction activity of barley chloroplasts. Biochim Biophys Acta 440: 461–475

    Google Scholar 

  • Philipp JE (1984) Comments on “Seed germination as a thermobiological problem”. Radiat Environ Biophys 23: 295–297

    Google Scholar 

  • Porto F, Siegel SM (1960) Effects of exposures of seeds to various physical agents. III. Kinetin-reversible heat damage in lettuce seed. Bot Gaz 122: 70–71

    Google Scholar 

  • Pütter A (1914) Temperaturkoeffizienten. Z Allgem Physiol 16: 574–627

    Google Scholar 

  • Robertson TB (1923) The chemical basis of growth and senescence. Lippincott, Philadelphia London

    Google Scholar 

  • Siegel SM (1950) Effects of exposures of seeds to various physical agents. I. Effects of brief exposures to heat and cold in germination and light sensitivity. Bot Gaz 112: 57–70

    Google Scholar 

  • Siegel SM (1953) Effects of exposures of seed to various physical agents. II. Physiological and chemical aspects of heat injury in the red kidney bean embryo. Bot Gaz 114: 297–312

    Google Scholar 

  • Silvius JR, McElhaney RN (1980) Membrane lipid physical state and modulation of the Na+, Mg2+-ATPase activity inAcholeplasma laidlawii B. Proc Natl Acad Sci USA 77: 1255–1259

    Google Scholar 

  • Silvius JR, Read BD, McElhaney RN (1978) Membrane enzymes: Artifacts in Arrhenius plots due to temperature dependence of substrate-binding affinity. Science 199: 902–904

    Google Scholar 

  • Simon EW, Minchin A, McMenamin MM, Smith JM (1976) The low temperature limit for seed germination. New Phytol 77: 301–311

    Google Scholar 

  • Sturtevant JM, Mateo PL (1978) Proposed temperature-dependent conformational transition in d-amino acid oxidase: A differential scanning microcalorimetric study. Proc Natl Acad Sci USA 75: 2584–2587

    Google Scholar 

  • Wolfe J, Bagnall DJ (1980) Arrhenius plots - curves or straight lines? Ann Bot 45: 485–488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Discussion about the Paper “Seed Germination as a Thermobiological Problem” by L. G. Labouriau Radiation and Environmental Biophysics 15:345–366 (1978)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labouriau, L.G. Comments on “Seed germination as a thermobiological problem” (A reply). Radiat Environ Biophys 23, 298–304 (1984). https://doi.org/10.1007/BF01407602

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01407602

Keywords

Navigation